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ABSTRACT

The Muon optimizer has shown convincing evidence that it is faster and more scalable
than AdamW for deep learning training, setting speed records for training NanoGPT and
scaling up to models with 16B parameters. The theory that led to Muon is called metrized
deep learning, a method that suggests assigning norms to each part of a neural network.
Chapter 1 begins with an accessible explanation of metrized deep learning, including one of
its recurring tools: odd polynomial iterations that act directly on singular values. Chapter 2
reviews duality, a way to modify the gradient that seeks to decrease the loss the most while
disturbing the model the least. Pedagogically, duality links four popular optimizers—SGD,
Adam, Shampoo, and Muon—under a common framework, steepest descent under a norm.
Practically, experiments suggest that duality-based optimizers train faster than AdamW
and transfer learning rate across width. Chapter 3 develops tools to enforce weight norm
constraints during training, conferring provable and upfront Lipschitz guarantees for trans-
formers. We find that optimizer dynamics matter: switching from AdamW to Muon improves
standard weight regularization methods—weight decay and spectral normalization—allowing
models to reach equal performance with a lower Lipschitz bound. Leveraging that Muon’s
update has a fixed spectral norm, we co-design a weight constraint method called spectral
cap that improves the Lipschitz vs. performance tradeoff for MLPs and 2M parameter trans-
formers. Our 4-Lipschitz transformer on Shakespeare text reaches validation accuracy 60%.
Scaling to 145M parameters, our 600-Lipschitz transformer reaches 21% accuracy on internet
text. However, to match the NanoGPT baseline validation accuracy of 39.4%, our Lipschitz
upper bound increases to 102", Nonetheless, our Lipschitz transformers train without sta-
bility measures such as layer norm, QK norm, and tanh logit softcapping.
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Left: Weight constraint methods designed for Muon lie on the fron-
tier of the Lipschitz vs. loss tradeoff. Each point shows the lowest
validation loss achieved at a given Lipschitz constant across all MLP runs
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Spectral hard cap is a weight constraint method that applies the above
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Chapter 1

Introduction

Note 1.0.1. “You can do anything as long as you don’t need credit.”

Quite apart from President Truman’s words, intellectual credit is due to several collab-
orators to whom this thesis is indebted. A common thread is that Jeremy Bernstein
has thought rigorously about neural networks for ten years, lending a way of thinking—
culminating in the metrized deep learning theory with Tim Large—that produced the
fruits of our collaboration this year. I am also very grateful to Keller Jordan for turn-
ing his outstanding engineering prowess toward birthing the Muon optimizer together
with us in fall 2024. In sum, this thesis is indebted to these works:

e Modular norm theory: Large, Liu, Huh, Bahng, Isola, Bernstein

e Optimizer anthology: Bernstein and Newhouse

Modular duality theory: Bernstein and Newhouse

Muon optimizer: Jordan, Jin, Boza, You, Cesista, Newhouse, Bernstein

Lipschitz transformers: Newhouse, Hess, Cesista, Zahorodnii, Bernstein, Isola
. J

AdamW |Loshchilov and Hutter, 2019| has become the standard optimizer in machine
learning. Recently, an alternative has shown evidence that it may be faster and more scalable.
This alternative is both a concrete optimizer—Muon [Jordan et al., 2024b, Liu et al., 2025,
Shah et al., 2025]—and also a general method that unites past optimizers and current strands
of research under a common framework.

Chapter 1 explains the method of metrized deep learning, which came about in a series
of papers by Jeremy Bernstein |[Bernstein et al., 2021, Bernstein, 2022, Yang et al., 2023|.
Metrized deep learning seeks to control the size of every part of a neural network, including
activations, weights, and gradients. Why does size matter? What is the right way to measure
the size of a matrix? Section 1.2 answers these questions and is designed to teach the reader
the key thought patterns in metrized deep learning. Because the spectral norm will emerge
as a useful measure of size, Section 1.3 previews a computational primitive used in later
chapters—odd polynomial iterations—that allows acting directly on the singular values.
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Figure 1.1: Duality promotes signal from small singular values. Left: Potentially
useful signal could be lost because gradients are typically dominated by a few large singular
values. Right: the spectral norm duality map recovers this signal. Muon [Jordan et al.,
2024b]| approximates the duality map using an odd polynomial that inflates singular values
by at most 485x, staking an implicit claim about the scale at which singular values may
truly be noise. The plot shows the spectrum of a gradient from the layer 4 query matrix at
step 100 of training a 120M parameter NanoGPT on internet text [Karpathy, 2022].

In Chapter 2, metrizing deep learning leads to duality, a way to modify the gradient ac-
cording to a geometry that is well suited to it. This chapter is based on two papers, Bernstein
and Newhouse [2024a,b|, for which all of the credit for the ideas goes to Jeremy Bernstein.
Section 2.1 tells the story of how three popular optimizers—SGD, Adam, and Shampoo—
can be viewed under a common framework as duality maps under different choices of norm.
Section 2.2 derives Muon as arising naturally from the spectral norm duality map, similar to
Shampoo, but implemented with odd polynomials instead of inverse matrix powers. Keller
Jordan added several more engineering innovations. Section 2.3 concludes with intriguing
properties of duality, including new experiments and open questions. Figure 1.1 visualizes
how useful signal could be lost in smaller singular values, which a duality map can recover.

In Chapter 3, metrizing deep learning is applied to training transformers with strict
weight norm constraints. This chapter is based on forthcoming work done jointly with
Jeremy Bernstein and other collaborators. Section 3.1 motivates extending the benefits of
small Lipschitz bounds—intuitively, the sensitivity of a network to input perturbations—to
transformers beyond initialization. To develop a toolkit for training transformers with an
enforced Lipschitz constant, Section 3.2 compares several methods for constraining weight
norm. Perhaps surprisingly, optimizer choice appears to matter: standard methods such
as weight decay [Krogh and Hertz, 1991] and spectral normalization [Yoshida and Miyato,
2017] improve a Lipschitz vs. performance tradeoff more with Muon than AdamW. Beyond
standard methods, the fixed update norm of Muon inspires designing a weight constraint
method called spectral soft cap, which enforces a desired maximum spectral norm o, by
approximating the map o — min(oy,.y, o) on all singular values ¢ in parallel by iterating odd
polynomials on the weights. In Section 3.3, a 4-Lipschitz transformer is capable of achieving
60% accuracy on Shakespeare text. Scaling to the NanoGPT speedrun benchmark [Jordan
et al., 2024a|, we train 145M parameter transformers with an enforced Lipschitz constant
without layer norm [Ba et al., 2016] or QK norm [Henry et al., 2020].

16



In any endeavor, it is worthwhile to examine carefully the existing foundation. Two
common practices in training with AdamW provide footholds into the ideas in later chapters.
Therefore, the first step on this journey is to look at the way many researchers currently
train models.

1.1 Optimizing with AdamW

This section aims to capture the current “word on the street” of how to optimize deep learning
models. At the end, we point out two items that the following chapters will reconsider:
gradient clipping and weight decay. The recipe looks as follows:

1. Use AdamW with ; = 0.9, 82 = 0.95 [Jordan et al., 2024a, Kumar et al., 2024].

2. Sweep learning rate in logspace [Bengio, 2012], typically around 107° to 1073,

3. Use weight decay 0.1 [Brown et al., 2020, Ahmadian et al., 2023, DeepSeek-AT, 2025|.
4. Clip gradient norm: g — g¢/||g|2 if |g[l2 > 1 [Kumar et al., 2024, DeepSeek-Al, 2025].
5. Use e = 1071 to avoid instabilities from tiny gradient norms [Wortsman et al., 2023].

6. Use a linear or cosine learning rate schedule [Bengio, 2012, Jordan et al., 2024a).

Note 1.1.1. Improving gradient clipping

As a preview of Chapter 2, the motivation behind clipping the gradient is to stabilize
training. But an ideal optimizer can be viewed as holding two goals at once: minimize
the loss the most, while disturbing the model the least. Gradient clipping makes
two implicit choices: 1) that the gradient already points in a useful “direction” and
2) that the right geometry to measure model disturbance in is Fuclidean via the /(5
norm ||-|o. Duality revisits these choices, suggesting that different choices of norm
yield different optimizers—SGD, AdamW, and Muon are special cases if momentum
is turned off—that may be better suited to neural networks.

& J
Note 1.1.2. Upgrading weight decay to a strict norm constraint

As a preview of Chapter 3, when weight decay is combined with a bounded weight
update in some norm, the weight in that same norm cannot exceed 1/ [Pethick et al.,
2025]. The reason is an equilibrium occurs between the update step and weight decay
when the weight norm w satisfies w = w(1 — An) 4+ n for learning rate n > 0. Chapter 3
leverages this observation and extends it, since Muon’s updates have fixed spectral
norm, although Muon accomplishes this property not via clipping but with duality.

. J




1.2 Metrizing deep learning

Contribution statement: Jeremy Bernstein developed the metrized deep learning method—
a framework for assigning norms, or a way to measure size, to the weight matrices in a
neural network—in a series of papers, especially “A Spectral Condition for Feature Learning,”
“Optimisation and Generalisation in Networks of Neurons,” and “Scalable Optimization in
the Modular Norm” [Yang et al., 2023, Bernstein, 2022, Large et al., 2024].

Consider a thought experiment. Suppose x = 1, and we wish to minimize the function
f(x) = 2%. The negative gradient is —2, not far from the step —1 that minimizes the loss.
But what if the curvature increased to f(z) = 10022? The gradient becomes far too large.
What if the function flattened to f(x) = x?/100? The gradient becomes far too small. Tt
appears that the magnitude of the gradient is not always helpful information. In this thought
experiment, the direction is what is useful.

Function Negative Gradient Optimal Step

x? -2 —1
10022 —200 -1
0.0122 —0.02 -1

Table 1.1: Thought experiment: to minimize quadratics with different curvatures, it is
helpful to ignore the magnitude of the gradient in favor of the direction information.

Many optimizers such as Adam are motivated from second-order theory—Ileveraging cur-
vature information—and other optimizers explicitly approximate the Hessian [Nocedal and
Wright, 2006, Nesterov and Polyak, 2006]. This thought experiment suggests a different idea:
normalizing the gradient, and ignoring curvature, may be enough. However, that is not the
full story. In Chapter 2, duality indeed limits the update magnitude, but it also seeks to
minimize the loss. Duality will connect SGD, Adam, Shampoo, and Muon (with momentum
turned off) as arising from different choices of norm—or different ways to abstract away the
size information from the gradient. This control over the gradient forms a step in a more
general three-step agenda for building an architecture-aware optimizer:

1. Bound the change in loss in terms of changes in the network output.
2. Relate changes in network output to changes to the weights.

3. Bound changes to the weights.

This agenda gives a first-principles way to reason about creating an optimizer that will
update the weights with the end goal in mind—reducing the loss. Jeremy Bernstein’s PhD
thesis proposes this agenda [Bernstein, 2022|, building on previous work towards architecture-
aware optimizers [Bernstein et al., 2021, 2023, Liu et al., 2021], including the majorization-
minimization recipe [Lange, 2016, Streeter, 2023|.

What is the right way to carry out this agenda for deep learning? Large et al. [2024]
propose developing such bounds for the atoms of deep learning—Linear, Embed, Conv2D,
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and other layers—and stitching the bounds together to create a recursive, architecture-aware
bound for any neural network.

The central idea is to equip input and output activation spaces with a norm to measure
size. Different atoms may benefit from different norms. For example, while Linear and
Embed are both linear maps with weights in R™*", Linear expects dense input vectors while
Embed expects one-hot input vectors. Different choices of norm will give rise to different
optimizers. Chapter 2 links the /,, norm with Adam and the RMS norm—a rescaled /¢
norm that considers the dense all-ones vector to be unit norm—with Muon.

Metrized deep learning provides no principle that proves that one norm is better than
another in a particular setting. Instead, which norms are best for different situations may
depend on many factors, and nailing down a precise answer is an open question. The
framework posits that a choice of norm, however, is a critical design decision.

Nonetheless, there is evidence that a rescaled spectral norm may be the most natural
choice for Linear layers. The so-called RMS — RMS (“RMS to RMS”) operator norm equals
1 when the spectral norm equals 4/dou/din for a weight matrix W e Rdeuwtxdin  For a first
intuition of why this norm makes sense, some activation functions like GeLLU [Hendrycks and
Gimpel, 2023] are designed for activations with entries near 1. If the all-ones vector in d
dimensions is to have unit norm, the only scaling of an ¢, norm that works is ||-|rms = \/ig 2
Because of this scaling, the RMS norm is dimensionless and is useful across widths. For a
second intuition, if feature learning is to mean changes in activations measured in a Euclidean
space—which may make sense if representation spaces have linear structure |[Park et al.,
2024]—then a rescaled ¢5 norm is the only choice. A major upside of using the RMS — RMS
operator norm size is that it recovers the initialization and update rules from maximal-
update parameterization, or uP, a way to scale networks up while preserving the optimal
hyperparameters |[Yang et al., 2022, 2023|. The RMS norm therefore reproduces a path
toward learning rate transfer across width, allowing one to tune the learning rate on a small
network and then use the same optimal learning rate in the larger setting.

Once one has selected an input and output norm, one can norm the overall matrix.

Definition 1.2.1. Operator norm of a matrix

Let W be a linear map from a vector space A to a vector space B. Equipping A and
B with norms |4 and |||z induces an operator norm |-|4_p defined by

Wlaos = max  [Wels.
zeA:||z| a=1

\ J

Operator norms are flexible and offer an array of design choices. Some are recognizable:
e For input ¢; and output /., the operator norm is the max absolute entry.
e For input ¢, and output /5, the operator norm is the spectral norm |-|2—.

e For input RMS and output RMS, the operator norm is scaled as j " I l2—2-

A common and important operator norm is the spectral norm.

19



Definition 1.2.2. Singular value decomposition (SVD) and spectral norm

The singular value decomposition of a matrix W e Rut*din always exists and is written
W = UXVT, where U and V are orthogonal matrices and ¥ is diagonal. The entries
of ¥ are nonnegative and are known as the singular values of W. The spectral norm
[-|2—2 of W is its largest singular value. The singular values record the amount that
W can stretch inputs in the /5 norm. The orthogonal matrices U and V', which satisfy

UUT =T and VVT = I, are rotations that do not affect the ¢, norm at all.
\ J

The three-step agenda for an architecture-aware loss bound is now possible to carry out.
First, near the current network output y, set out a local quadratic model of the loss function
L of the form L(y) +V,L(y)"Ay+ 3 - |Ay|?. Crucially, the sharpness parameter A and norm
|-|| are chosen a-priori without ever touching an (approximate) Hessian during training.

Second, operator norms enable bounding changes to network output in terms of changes
to weights. A matrix W acts on an input vector x to produce an output vector y like

y=Wa. (1.1)

If the input space has norm |[|-||4 and the output space has norm |-| g, then a change to the
weights AW changes the network output an amount bounded by the operator norm:

Ay < [AW [ a-p]z]a- (1.2)

Equation (1.2) says that, if the activations are kept well-normed, then controlling the change
in network output amounts to controlling the operator norm of the weight update. All in
all, the loss function admits a local approximation, this time in terms of the weights:

LW +AW) ~ LW) +{(VwL(W),AW) + g AW AL 5, (1.3)

where (-, -) denotes the Frobenius inner product—the sum of the entrywise product of two
matrices. To finish out with the third step, bounding weight updates AW in the |-|a_p5
operator norm will now control the change to the loss from every step of training.

To bound a weight update, the first thing one might think to do is to normalize it like
AW — AW /||AW || 4_ g, recalling what worked in the thought experiment (Table 1.1). This
approach is called gradient clipping, often done with the ¢ or /,, norm on the flattened
matrix. But gradient clipping is not ideal in higher dimensions. For the spectral norm,
Figure 1.1 visualizes how the gradient matrix typically has a few large singular values and
many more small ones. The small singular values may contain important training signal,
but normalizing the gradient risks suppressing this signal. Instead of normalizing, Chapter 2
develops an alternative: dualizing the gradient. For a gradient matrix G € Réut*din - duality
arises by solving a steepest descent problem under a norm [Boyd and Vandenberghe, 2004b,
Bernstein and Newhouse, 2024a|. The steepest descent problem aims to reconcile two ten-
sions: a desire to move infinitely in the direction of linearized improvement (i.e., (G, AW))
and a desire to stay close to the region of validity of the linearization (i.e., 3| AW/?). Namely,

A
AWsteepest =  argmin [<G, AW + B HAW!z] ) (1.4)

AW eR%ut Xdin
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The art becomes to choose norms that will lead to tight approximations to Equations (1.2)
and (1.3). Large et al. [2024] took early steps toward turning this art into a science by
developing the modular norm, which recursively extends norm choices on atomic modules to
define a single norm for the entire neural network. Unlike prescient work by [Flynn, 2017],
the modular norm takes a max over atomic norms, with scale factors that automatically
track and control the sensitivity of the network output, even up to second order.

While applying a duality map to gradients is one application of metrized deep learning
(Chapter 2), another is to enforce bounds on the weight matrix norm (Chapter 3). A common
thread is that controlling the singular values is a core operation. But it is inefficient to
compute a singular value decomposition W = UXV7T on a GPU, which would be necessary
to apply a function f(z) to every singular value directly. For weight decay, a miracle occurs:
(1 - NUSVT = U1 — N)XVT) where A > 0 is the weight decay parameter. Though
apparently mundane, multiplying by a constant commutes to act on the singular values,
preserving spectral structure without ever computing an SVD. The next section generalizes
this observation to construct a GPU-friendly computational primitive for control over the
singular values.

1.3 A primitive for controlling singular values

Contribution statement: The idea to apply odd polynomial iterations to matrices is not new,
but classically the coefficients were derived based on Taylor approximations [Kovarik, 1970,
Bjorck and Bowie, 1971, Higham, 2008]. Jeremy Bernstein told me about the method and
proposed using these iterations to orthogonalize gradient matrices [Bernstein and Newhouse,
2024af. Jeremy Bernstein also popularized tuning the coefficients graphically using Desmos to
find polynomials that converge faster [Bernstein, 2025]. I proposed applying odd polynomials
directly to weight matrices, for instance to approzimate min(1, z) to spectrally cap the singular
values at 1 while also allowing them to decay to 0.

Suppose one wants to apply a continuous function f : R.qg — R5( to all the singular
values ¢ > 0 of a matrix, with the only condition that f(0) = 0. In other words, if the
matrix has singular value decomposition UX VT, the goal is to map

Usvt — Uf()vr, (1.5)
Two earlier methods each suffer from a problem:

1. Do the SVD. This method applies the SVD routine to compute U, ¥, and V, returning
Uf(X)VT. But the SVD is slow to run on a GPU as it is not significantly parallelizable.

2. Do sketching. Sketching is a randomized method |[Martinsson and Tropp, 2020] that
approximates the SVD. While more tractable to compute, sketching acts only on the
top k singular values while setting the rest to 0. The small singular values may matter.

A third method solves both problems, because it is efficient to run on a GPU and acts
on every singular value:
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Figure 1.2: Preview of Chapter 2: approximating the function sign(z) on the singular values

of a gradient implements the spectral norm duality map. One odd polynomial approximation
comes from iterating p(z) = 3z — 123, which converges to sign(z) in the range (—v/3,+/3).

The linear coefficient controls the convergence speed. Plots reproduced from Bernstein [2025].

3. Iterate odd polynomials. Suppose py,...,p, are odd, single-variable polynomials
that compose to approximate a continuous function f : Ry y — Rsg with the condition
that f(0) = 0. Weierstrass’s theorem shows that an approximation can be made
arbitrarily good: approximate g : R — R, defined as f(x) on x > 0 and —f(—x) on
x < 0, then use the approximation on x > 0. Because py, is odd, applying it to a matrix
acts on the singular values directly as pp(UXVT) = Up,(X)V7, as the theorem below
shows. Therefore, applying p; up to p, in succession will apply the approximation of
f(z) to every singular value of a matrix.

Theorem 1.3.1. Odd polynomials act directly on the singular values

If p(z) is an odd polynomial and UXV7T is a singular value decomposition, then
p(UZVT) = Up(2)VT.

Proof. Let W = UXV7T be a singular value decomposition. Consider one odd power term

W2k+1 To make the shapes work for rectangular matrices, the matrix power is defined to
be W+ = (WWT)kIW. The trick is that U and V are orthogonal, which means UU? = [
and VVT = I. Expanding gives

W = (WWHW = (USPUT)'W = USHUTW = Us™ v, (1.6)

Since ¥2**! means raising each entry of the diagonal matrix to the power of 2k + 1, a single
odd power of the matrix applies itself directly to the singular values. Linearity extends the
proof to all odd polynomials. O

Example 1: Weight decay. The simplest example of an odd polynomial is scalar
multiplication, p(x) = (1 — An)x, which implements weight decay for decay parameter A > 0
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Figure 1.3: Preview of Chapter 3: spectral soft cap is a weight constraint method that applies
the above odd polynomial to all singular values of a weight matrix in parallel. It composes

p1(z) = z — az?® with py(r) = z + az®. The result is depicted for a = 0.2 (blue), a = 0.1
(red), @ = 0.05 (green), o = 0 (purple).

and learning rate n > 0. Because (1 —M)UXVT = U(1 — Ap)XV7T, weight decay acts on the
singular values of the weight matrix and preserves its spectral structure.

Example 2: Duality. The spectral norm duality map for a gradient says to set all the
singular values to 1, equivalent to applying the odd function sign(x) for x > 0. Figure 1.2
shows that iterating the odd polynomial p(z) = %x — %x:)’ provides one such approximation,
valid in the range (0,4/3). To squash the singular values into this range, one can first divide
by the Frobenius norm of the gradient, which upper bounds the spectral norm. Tuning
the coefficients can speed up convergence, such as p(r) = 3z — 3.22% + 1.22°. You [2025]
discovered a six-step iteration that converges quickly and stably, shown in Figure 1.4.

Example 3: Generalized weight decay. Beyond linear polynomials, consider the
polynomials p;(z) =  — az® and py(z) = x + ax?, for strength parameter a > 0. When o =
0.05, the polynomial py(p1(x)) never exceeds 2. As a result we say that this polynomial spec-
trally caps the singular values at 2. Figure 1.3 plots this polynomial for a € {0.2,0.1,0.05, 0}.
Polynomials that approximate min(oyay, ) for a desired maximum spectral norm oy, > 0
become important in Chapter 3.

Note 1.3.1. Accelerating odd polynomial iterations

GPU kernels for odd polynomial iterations can be accelerated around 30% by exploiting
that many of the matrix multiplications are symmetric, like AAT. I proposed this idea
and wrote a proof-of-concept kernel [Newhouse et al., 2024, but it had a bug. Our
code used ThunderKittens, a framework for simple and fast kernels [Spector et al.,
2024]. Lin [2025] fixed the bug and called the algorithm Flash-Muon.

\ J
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Figure 1.4: You [2025| discovered six odd polynomials that compose to closely approximate
sign(x), which implements the spectral norm duality map (Chapter 2) when applied to the
singular values of a gradient matrix. You [2025]’s method is to use numerical optimization
to search for good coefficients. Plots reproduced from Bernstein [2025].
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Chapter 2

Duality in deep learning

2.1 Old optimizer, new norm

Contribution statement: The ideas in this section are primarily due to Jeremy Bernstein.
The narrative adapts two papers we wrote together, “Old Optimizer, New Norm: An Anthol-
ogy” and “Modular Duality in Deep Learning” [Bernstein and Newhouse, 2024a,b].

This section tells the story of how three popular optimizers—SGD, Adam, and Shampoo—
can each be understood from a common concept called duality. The upshot is that the first
step of metrizing deep learning—equipping activation spaces with norms—Iinks past opti-
mizers under a common framework and may provide inspiration for designing faster, more
scalable optimizers. The section after this one will show how duality leads to the Muon op-
timizer, which set speed records for training NanoGPT [Jordan et al., 2024a] and has since
been validated at scale [Liu et al., 2025, Shah et al., 2025].

The spirit of duality is that an ideal optimizer wants two things at once:

1. Reduce the loss the most.
2. Disturb the model the least.

But to reduce the loss, the model must change. The compromise is constrained optimization:

argmin tr(G'AW) such that |AW| <, (2.1)
AW

where G is the gradient, AW is the weight update, and tr(G"T AW ) is the linearized improve-
ment in the loss. A question arises: how to measure the size of the disturbance AW? This
question is at the heart of duality. Different optimizers make different choices, summarized
in Table 2.1. This section tells the story of three such choices. Credit to Jianlin Su for
putting the spirit of duality in these terms [Su, 2025].

One motivation behind duality is that there is a type mismatch in the most basic form
of gradient descent. To pass the type check, the gradient must be passed through a duality
map before being multiplied by the learning rate and subtracted:

weight — LR xweight.grad type error!
weight — LR+ dualize(weight.grad) all good!
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Domain Norm Duality Map Optimizer Cousin

R" Euclidean ¢, g— m gradient descent SGD
R infinity £o, g — sign(g) sign descent Adam
NG spectral l5_,9 G—UV"T spectral descent Shampoo, Muon

Table 2.1: Popular optimizers are related to duality maps under different norms. In spectral
descent, the gradient is viewed as a matrix. Its singular value decomposition is G = UXV .

The reason is that a gradient is a dual vector, an entirely different object from a weight.
The difference is well understood in physics, where Professor Netta Engelhardt at MIT once
opened a general relativity lecture by asking, “How many of you have been lied to that
the gradient is a vector?” It is also understood in mirror descent [Nemirovsky and Yudin,
1983], natural gradient descent [Amari, 2016|, and steepest descent under a norm |[Boyd and
Vandenberghe, 2004al. A duality map must first map the gradient to the primal space.

Definition 2.1.1. Dual vector, dual space, and duality map

Given a vector space V', a dual vector is any linear function f : V — R. For example,
row vectors are functions that map column vectors to real numbers via a dot product.
The dual space V* of V' is the set of dual vectors on V. The dual space is itself a
vector space, with addition defined (f + g)(z) = f(z) + g(x) and scalar multiplication
defined (af)(x) = af(z). A duality map is any function that sends a member of the
dual space V* to a member of the primal space V. We do not require that applying
a duality map twice must equal the identity map. Given a dual vector f € V*, its
functional form f(-) is often written as an inner product {f,-), which is possible by
the Riesz representation theorem [Riesz, 1907].
. J
Why is the gradient a dual vector? Let £ : W — R denote a differentiable loss function
for a machine learning model with weight space WW. The gradient is a dual vector because,
in the Taylor expansion of the loss,

LW+ AW) = LW) +{VwL(W), AW ) + higher-order terms, (2.2)

the gradient appears as a function (Vy £(W), -). This function takes in a weight perturbation
AW and outputs a real number representing the linearized change in loss due to the weight
perturbation. Therefore the gradient lives in a different vector space from the weights. A
priori, there is no clear way to add the two.

The weight space may well be R™*", and the gradient may well be the exact same shape.
But enforcing the restriction not to add them is a reminder that the loss function may have
highly heterogenous curvature. The raw gradient might not respect this heterogeneity, unless
a good duality map corrects the size and direction of the gradient to better attune it to the
curvature in the loss function.

One path to arrive at duality is steepest descent under a norm. As in Chapter 1, suppose
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that there is some norm |[|-| : W — R and sharpness parameter A\ > 0 that serve as a good
local approximation of the loss,

LW + AW) ~ L(W) + (Vi L(W), AW + g AW, (2.3)

If this approximation is good, a weight update should find a AW to minimize it. The solution
splits into a step size based on a dual norm and a step direction based on a duality map.

Definition 2.1.2. Dual norm and duality map based on a norm

Given a norm || : V' — R on a vector space V, the dual norm ||-|" of a dual vector
GeV*is

G|t := G, T

611 =, G,

The duality map based on a norm is

dualize| G := argmax (G, T),
TeV:|T|=1

where, if the arg max is not unique, dualize|.| returns any maximizer.

. J
Theorem 2.1.1. Steepest descent under a norm

For any dual vector G € V* thought of as “the gradient,” any sharpness A > 0, and
any norm || : V' — R with dual norm ||| and duality map dualize|.|, steepest descent
splits into a step size based on the dual norm and a step direction based on the duality
map:

T
arg min l<G AW + — |AW||2] __l&l” - dualizey.|(G).
AWeV A

L J

The proof of this theorem is based on the proof given in Bernstein and Newhouse [2024a].

Proof. Consider the minimization problem under a change of variables AW = ¢T', where
¢ = 0 encodes the “magnitude” and T is a unit vector (|7'|| = 1) that encodes the “direction”:

. : 21T
Amln [<G AW>+ HAWH ] —min _min [c(G T>+ 1T ] (2.4)
: : Ay
= Iggl lc . Teé’r}“lj{l”:l [<G, T>] + 50 :| (25)
A
= 1 —C - T —_ 2
Iggll c-|G|I" + 5¢ ] . (2.6)

Inspecting Equation (2.5), the minimizer for the direction 7" is given by

T = argmin [(G,T)] = — argmax [(G,T)] = — dualize|.|(G). (2.7)
TeVH|T|=1 TeV:|T)=1
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And similarly, inspecting Equation (2.6), the minimizer for the magnitude c is given by

A G|t
¢ =argmin | —c-|G|' + = | = u (2.8)
c=0 2 A
Multiplying these expressions yields the minimizer for AW, proving the result. O]

In practice, the step size is often ignored in favor of a standard learning rate schedule.

A few prescient works explored duality maps under norms, including steepest descent
under the spectral norm [Carlson et al., 2016, 2015a,b, Flynn, 2017]. In fact, duality extends
a classical literature including natural gradient descent that seeks to modify the gradient
based on geometry. The main difference is that natural gradient descent is designed for
inner product geometries, but not every norm comes from an inner product. The spectral
norm is an important example, making normed geometries more diverse and potentially
better suited to neural network optimization.

Duality reproduces popular optimizers (with momentum turned off) under different
choices of norm. While not necessary for SGD or Adam, the main conceptual leap re-
quired for Shampoo and Muon is to think of the gradient as a matrix, rather than a vector
of independent parameters.

Gradient descent as duality under the Euclidean norm. The /5 norm duality
map applied to a gradient vector g € R? yields dualize|.|,(g) = ¢/||g|2. This map rescales the
gradient to be an ¢, norm unit vector. Since the ¢, norm equals its dual norm, the steepest
descent step cancels out the division to give Aw = —% g. This update is exactly gradient
descent with an inverse learning rate .

The same duality map can be viewed as arising from a norm on a matrix. The Frobenius
norm |-|| ¢ is like a dot product for a matrix: it squares the entries, sums them, and takes
a square root. The duality map dualize.|, sends a gradient matrix G € R™*" to a weight
update G/|G| F, exactly as if the gradient had been a vector under the f5 norm. The
Frobenius norm is not an induced matrix norm, however, meaning it does not presuppose a
way to measure size in the input and output spaces.

Adam as duality under the £; — £, norm. Adam is often considered the standard
optimizer for deep learning, with well over 100,000 citations for the original paper [Kingma
and Ba, 2015] and over 25,000 citations for its cousin AdamW [Loshchilov and Hutter, 2019].
Adam has been motivated in various ways, including through convex analysis [Kingma and
Ba, 2015] and as an approximate second-order method [Sun and Spall, 2021]. However, there
are more direct explanations: with exponential moving averages (EMA) switched off, Adam
is just sign gradient descent |Balles and Hennig, 2018, Bernstein et al., 2018|, equivalent to
steepest descent under the infinity norm |[Carlson et al., 2015a|. Viewed another way, Adam
is also steepest descent under an induced matrix norm, though with a catch at the end.

To begin, ignoring bias correction and numerical stabilization, Adam is given by the
following updates:

my = Bi-mu_1 + (1= B1) - gt (2.9)
v = Po-vieg + (1= ) 'tha (2.10)
Wiyl = Wy —U‘mt/\/Uu (2-11)
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where ¢ denotes the time step, g; € R™ the gradient vector, and n > 0 the step size. The
exponential moving average (EMA) time scales of the gradient’s first moment m, and second
moment v; are set by 0 < 31, 2 < 1. All operations are conducted entrywise. Switching off
the EMA by setting 5; = 2 = 0, the Adam updates reduce to just sign gradient descent:

W1 = W — 1] gt/\/gTs2 (2.12)
= w; —n - sign(gy). (2.13)

Why should sign descent be a good idea in deep learning” Omne reason might be that
it solves a duality problem under the ¢, norm. Given a vector g € R? thought of as the
gradient, the duality map is dualize|.,(g) = sign(g), where the sign function is applied
entrywise and sign(0) = 0. In other words, the vector that minimizes the linearized loss
under an /., constraint is the sign vector.

But this answer is not quite satisfying, because the ¢,, norm operates on vectors while
throwing away tensor information in the gradient. There is a way out, however, by observing
that the ¢, norm satisfies a special property summed up by the slogan “a max of a max is a
max.” In particular, letting row;(G) denote the ith row of a gradient matrix G € R™*" the
maximum entry of G can be written in various ways as

max(G) = |flatten(G) |, = max [row;(G)]leo = |G15005 (2.14)

where |-|1q is the ¢; to {4 induced operator norm. It is the max of row ¢, norms, as
shown in Proposition 8 of Bernstein and Newhouse [2024a]. So Adam does account for the
tensor structure of the gradient, implicitly assigning the ¢; norm to the input space and the
{4 norm to the output space. Its update, with momentum disabled, is a duality map under
the |-|;s operator norm. This matrix-aware update may be one reason why Adam usually
outperforms vanilla gradient descent.

One catch, though, is that while Adam accounts for the matrix geometry, it may do
so inconsistently. The ¢;_,,, operator norm supposes an {; geometry on the input space
and an f,, geometry on the output space. But applying Adam to one layer after another
would require switching the interpretation of the middle activation space mid-flight. Could
a hypothetical optimizer alternate between duality maps under ¢;_,,, and ¢ _,1, passing the
type check and perhaps improving performance? Tropp [2004| showed in his PhD thesis that
this hope is not tractable: the f,_; norm is NP-hard to compute. Table 2.2 summarizes
nine common operator norms. The six tractable norms provide a ruleset for how to choose
input and output norms that stitch together into an overall, architecture-aware optimizer.
The next optimizer we examine, Shampoo, stitches operator norms together in just this way.

Shampoo as duality under the spectral norm. The Shampoo optimizer |[Gupta
et al., 2017, 2018|, invented at Google, recently came to increased attention after a variant
of it won the external tuning track of the 2024 AlgoPerf: Training Algorithms competition
[Dahl et al., 2023]. While the method was originally motivated as a generalization of AdaGrad
[Duchi et al., 2011] to tensor spaces, later work casts Shampoo as an approximate second-
order method [Anil et al., 2020, Morwani et al., 2024|. But Shampoo—with accumulation
disabled—has another, squarely first-order interpretation as duality under the spectral norm.
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From To ¢, To 4 To ¢,

0 Max ¢ norm Max ¢ norm Max absolute
! over columns over columns entry of matrix
’, NP-hard ‘ Max Max ¢ norm
singular value OVer TOws
Ly NP-hard NP-hard Max £, norm

over rows

Table 2.2: Common operator norms, adapted from Tropp [2004]. Optimizers that apply a
consistent interpretation of activation space norms may chain together a compatible sequence
of operator norms, but several options are unavailable due to NP-hardness.

To begin, at each time step ¢ and layer L, Shampoo is given by the following updates:

L = Li_1 + GG, (2.15)
Rt = Rt—l + GIGlt, ) (216)
Wt+1 = Wt —-n- Lt_ZGth_Z, (217)

where (G, is the gradient matrix and the two matrices L; and R; are called the left and right
preconditioners. Shampoo derives its name from the order of operations when showering:
before conditioner comes shampoo. With accumulation disabled, the update reduces to

Wiy = Wi —n- (GG 75 G, (G Gy) 73 (2.18)
=W, —n UV, (2.19)

where Equation (2.19) comes from substituting the reduced singular value decomposition of
the gradient G; = U;%,V," into Equation (2.18). Notice that there is a direct parallel between
Equations (2.12) and (2.13) for Adam and Equations (2.18) and (2.19) for Shampoo.

Therefore Shampoo’s update U;V," is always a semi-orthogonal matrix. In fact, it is the
closest semi-orthogonal matrix to G under the Frobenius norm, as proved in Proposition 4
of Bernstein and Newhouse [2024a]. This fact has given the operation a name, orthogonal-
i1zing the gradient. Since semi-orthogonal matrices have singular values all 1, projecting the
gradient to its nearest semi-orthogonal matrix is a kind of normalization under the spectral
norm. But Shampoo’s update is not just a normalization G/|G|2—2, which would suppress
small singular values. It is a duality map, which increases small singular values.

Theorem 2.1.2. Spectral norm duality orthogonalizes ULV '+ UV’

Given a matrix G' € R™*" with singular value decomposition G = UXV T, the spectral
norm duality map is dualize|., ,(G) = UV . The solution is unique if G is full rank.

Proof. The relevant alignment measure to maximize is (G, T = tr G'T', which multiplies the
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matrices entrywise and sums. Since G has singular value decomposition ULV = 3 oyuv,

argmaxtr G' T = arg max tr Z oy T (2.20)
[T]2—2=1 [T]2—2=1
= arg maxz oy u; Tv; < ZOZ =trY, (2.21)
[T]2—2=1

where the inequality comes from the spectral norm constraint |72 = 1. And setting
T=UVT = DU v] saturates the inequality, as desired. Consequently, the dual norm is
IG|L, = tr GTUVT — o

For uniqueness, if G is full rank then all its singular values are positive, meaning 7" must
select u;v; for each 7 to saturate the inequality. But if G is not full rank then some singular
value o; is 0, and the corresponding subspace has no uniqueness guarantee since —u;v, would

work just as well. O

So Shampoo’s update projects the gradient to the nearest semi-orthogonal matrix, and
this operation can be viewed as a duality map under the spectral norm. Viewing Shampoo as
a (smoothed out) spectral duality map grounds the algorithm in prior literature on spectral
descent [Carlson et al., 2015a, 2016, Fan, 2017|.

To extend duality map updates to a neural network with multiple layers, one can dualize
under the max of individual norms over the layers. The max plays a special role in duality
maps, akin to an instruction to parallelize:

e A max over the absolute values of entries sets each entry to +1 in parallel, as in Adam.
e A max over the singular values sets each singular value to 1 in parallel, as in Shampoo.

e A max over the norms of layers dualizes each layer in parallel, according to its norm.

The final point hints at modular duality, a way to unify weight updates across an archi-
tecture by selecting norms for each layer and performing steepest descent using a max over
norms on the indiviudal weight spaces |[Bernstein and Newhouse, 2024b|.

One reason to take a max over norms—as proposed by Large et al. [2024]—is that it
produces updates in every layer. In contrast, Flynn [2017|’s remarkable early efforts toward
duality used an ¢; combination over layers, which only updates one layer at a time.

It is an open question whether the step size from steepest descent is useful in practice.
Training pipelines often use learning rate schedules that may obviate the need for a global
step size. However, the dual norm is efficient to compute once the duality map is computed:
plug the arg max into the max.

And the odd polynomial iterations from Section 1.3 make it fast to compute the spectral
norm duality map UV that sets all the singular values to 1. Instead of inverse fourth roots
from the Shampoo update L, 2 4GtR_1/ % which can be unstable in lower precisions such as
bfloat16, this new computational approach enables a new optimizer, called Muon.
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2.2 Deriving Muon

The Muon optimizer, originally popular for setting speed records for training NanoGPT
[Jordan et al., 2024b], has since been validated at scale with favorable performance compared
to AdamW |[Liu et al., 2025, Shah et al., 2025]. The theory behind Muon is duality, an
application of the broader method of metrized deep learning. Muon falls out of three steps:

1. Select the RMS to RMS norm for every weight matrix.
2. Dualize every gradient using odd polynomial iterations.

3. Turn on momentum for smoother, full-rank gradient estimates.

Having set up duality maps, the Muon training update falls right out:

Mt+1 = 6 . Mt + (]. - ,8) . Gt, (222)
Wi =Wy —n- dualizeH'HRMSHRMS (Mt>7 (2'23>

where t is the time step, M; is the momentum buffer, W; is the weight matrix, G, is the
gradient matrix, 7 is the learning rate, and 0 < § < 1 sets the time scale for the exponential
moving average. There are three distinctions between the update rule above and the default
setting in the public implementation of Muon:

1. Muon uses Nesterov accelerated momentum, implemented as dualize|.| s s (Me +
G}), because Keller Jordan found that this update performs slightly better empirically.

2. Muon sets each singular value to a random number in the range [0.7,1.3], rather than
to 1. This relaxation allows using odd polynomials that inflate the small singular values
faster, as depicted in Figure 2.1.

3. Muon then scales the singular values by max(1, /dout/din), which differs from the
pure RMS — RMS norm factor dyy/din. The rationale may be to perserve activation
norms at initialization, when weights and activations align at random. During training,
however, activations and weights may learn to align, suggesting that the pure RMS —

RMS scaling factor 4/dou/din may be preferable in the long run.

Because it is an architecture-aware optimizer, Muon is designed for linear layer weight
matrices. It is not designed for embedding layers, layer normalization parameters, or bias
parameters. The metrized deep learning suggests possible alternatives for these parameters:

1. Embedding could use dualize.|, ..., since its inputs are one-hot vectors with unit ¢,
norm and it may be desirable for its outputs to have entries near 1, corresponding to
unit RMS norm.

2. An entrywise multiplication parameter vector could use dualize|.|,, akin to Adam,
since entrywise multiplication changes the RMS norm of an activation vector by at
most the maximum entry.
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Figure 2.1: Muon approximates spectral norm duality on the gradient—which sends all
singular values to 1—by iterating the polynomial p(z) = 3.4445x — 4.77502 + 2.03152° five
times to rapidly inflate small singular values. The iteration noisily approximates sign(x).
Muon’s maximum inflation factor of 485x defines an implicit threshold for when it considers
tiny singular values to be noise. Plots adapted from Bernstein [2025].

3. A bias parameter vector could use dualize|.|,,, akin to standard gradient descent, since
adding a bias vector u to an activation vector v can increase RMS norm by at most
[v + ufrms = [vlrms < ufrus.

In practice, Muon uses AdamW for the non-weight-matrix parameters. Perhaps other ap-
proaches could yield better optimizers. Metrized deep learning opens up many such research
questions, a sentiment captured by Pethick et al. [2025] who explore several norm choices.

2.3 Intriguing properties

Duality causes qualitatively different training behavior because it takes optimization steps
that have singular values all 1, for linear weight matrices. We list several phenomena.

Fast and scalable. Figure 2.2 shows that duality-based optimizers train faster than
Adam in the simple setting of MLPs on CIFAR-10 [Krizhevsky et al., 2009]. The optimal
learning rate transfers across width, since the RMS norm accounts for dimensional scaling.

The weights move! This observation is due to Jeremy Bernstein. A common narrative
in deep learning is that the weights cannot stray far from initialization for very wide networks
[Lee et al., 2019, Jesus et al., 2021]. Duality changes this story. Figure 2.3 shows that dualized
updates do move the weights—even in the Frobenius norm.

Low precision stability. Unlike the inverse fourth matrix powers from the Shampoo
update, odd polynomial iterations work well in bfloat16 precision. This numerical stability
further speeds up duality maps in practice and is implemented in the NanoGPT speedrun
[Jordan et al., 2024a].
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Several open questions remain:

Can duality-based optimizers be efficiently sharded on to clusters with thousands of
GPUs? The Dion optimizer presents a promising answer that uses an alternative to
odd polynomial iterations [Ahn and Xu, 2025].

When Shah et al. [2025] scale up Muon to batch sizes of 16M tokens, what is the role
of noise? By iterating its odd polynomial for 5 steps, Muon stakes an implicit claim
that below some threshold—around 485 ~ 3.445°—the singular values may truly be
noise and will not be promoted to 1. But larger batch sizes might reduce the noise
scale. If so, could increasing the singular value inflation factor—implicitly lowering the
assumption of the noise scale— increase performance?

What are the right optimization dynamics for the embedding layer? The ¢; — frus
duality map normalizes each column of the gradient, but for rare tokens, a momentum
buffer will add full-size dualized updates to that column of the weight matrix until the
buffer decays to exactly zero. In contrast, Adam’s two buffers with 5; < [, mitigate the
impact of rare tokens. One mitigation is to cap the inflation factor for the embedding
gradient columns, similar to Muon’s implicit noise scale. Are there other approaches?

Liu et al. [2025] pointed out that large models trained with Muon exhibit higher singu-
lar value entropy than when trained with AdamW. What are the implications? Might
Muon interact differently with the low rank simplicity bias of deep neural networks
[Huh et al., 2023]?7

If intelligence is compression, as the adage goes, then all the bits should matter equally.
Yet on the simple regression task f(z) = sin(x)+sin(7rz)/1028 with mean squared error
loss, gradient descent will learn the large component first and the small component
second, a bias toward higher order bits. Could Muon, which values each singular
vector direction equally, learn qualitatively differently?
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Figure 2.2: Learning rate transfer with dualization. To test that duality-based opti-
mizers transfer learning rate, we train an MLP on CIFAR-10 for 20 epochs at a range of
widths and learning rates. We plot the final training loss and mark the best learning rate at
each width with a red dot. Left: In standard parameterization (SP), Adam’s optimal learn-
ing rate drifts to the left. Middle: Maximal update parameterization |Yang and Hu, 2021,
1P| mostly corrects this drift. Right: Duality-based optimization has a fairly stable optimal
learning rate and also reaches much lower loss. More experimental details are available in
Appendix A of “Modular Duality in Deep Learning” [Bernstein and Newhouse, 2024b].
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Figure 2.3: Erasure of watermarked weights. It is commonly held that the weights stay
close to initialization in very wide networks [Lee et al., 2019, Jesus et al., 2021]. To visualize
the change in weights, we “watermark” the hidden layer weights of an MLP of width 1024 at
initialization by zeroing out matrix entries in the shape of the letter “a”. We then train for
1000 steps on CIFAR-10, across ten learning rates. For each run, we plot the final training
accuracy along with an image of the learned weight matrix. Not only does dualized gradient
descent reach higher training accuracies, but it also “erases” the watermark at the highest
stable learning rate, a substantial weight change. More experimental details are available in
Appendix A of “Modular Duality in Deep Learning” [Bernstein and Newhouse, 2024b].
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Chapter 3

Training transformers with enforced
Lipschitz constants

So far the focus of the metrized deep learning method has been toward the controlling the
gradients. Yet if all we control are the gradients, the weights may drift, and the model
may become highly sensitive to input and weight perturbations. This sensitivity has been
linked to pathologies such as vulnerability to adversarial examples, divergent training, and
overfitting. Therefore, this chapter applies the metrized deep learning method to enforce
norm constraints on the weights, specifically for transformers, where the closest related
work, LipsFormer, only enforces constraints at initialization [Qi et al., 2023]. To explore
this gap, we propose and benchmark novel, computationally-efficient tools for maintaining
norm-constrained weight matrices. Applying these tools, we are able to train transformer
models with Lipschitz bounds enforced throughout training. We find that optimizer dynam-
ics matter: switching from AdamW to Muon improves standard methods—weight decay and
spectral normalization—allowing models to reach equal performance with a lower Lipschitz
bound. Inspired by Muon’s update having a fixed spectral norm, we co-design a weight
constraint method that improves the Lipschitz vs. performance tradeoff on MLPs and 2M
parameter transformers. Our 4-Lipschitz transformer on Shakespeare text reaches valida-
tion accuracy 60%. Scaling to 145M parameters, our 600-Lipschitz transformer reaches 21%
accuracy on internet text. However, to match the NanoGPT baseline validation accuracy of
39.4%, our Lipschitz upper bound increases to 102™. Nonetheless, our Lipschitz transformers
train without stability measures such as layer norm, QK norm, and logit tanh softcapping.

Contribution statement: This chapter adapts material from an upcoming paper. Jeremy
Bernstein had the idea to study Lipschitz neural networks from the metrized deep learning
perspective. I proposed using odd polynomial iterations to control the singular values of
the weights, designed the spectral soft cap method depicted in Figure 1.3, and derived the
formula to couple its decay to the learning rate. I contributed to all the experiments in this
chapter. I designed the experiment pipeline and ran thousands of CIFAR-10 runs, thousands
of Shakespeare transformer runs, and around fifty 145M parameter runs at the NanoGPT
scale. Several collaborators joined near the end of the project: Andrii Zahorodnii investigated
adversarial robustness (Figure 3.2); Preston Hess invented the spectral hammer method with
Andrew Hutchison, compared methods (Figure 3.3), and wrote up several sections of the
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paper; Franz Cecista contributed innumerable speedrun experiments and fixed an error in the
Lipschitz constant calculation; Jeremy Bernstein and Phillip Isola advised throughout.

3.1 Introduction

Lipschitz constants for neural networks—intuitively, bounds on the sensitivity of each com-
ponent and of the overall model to input perturbations—are of interest for their effect on
generalization and robustness [Bartlett et al., 2017, Tsuzuku et al., 2018] and for applications
such as differential privacy [Béthune et al., 2024]. Seminal work [Arjovsky et al., 2016, Cisse
et al., 2017, Yoshida and Miyato, 2017, Anil et al., 2019] enforces Lipschitz constants beyond
initialization for MLPs, RNNs, and GANs, but for transformers, the closest related work,
LipsFormer [Qi et al., 2023|, does not constrain weights while training. Without constraints,
large-scale transformer training may encounter instabilities, which has been attributed to
attention and output logits growing too large [Wortsman et al., 2023, Dehghani et al., 2023].
Can enforced Lipschitz constants benefit transformers, too? Specifically, we ask:

Can transformers with small, enforced Lipschitz bounds perform well?
How does the weight constraint method affect the Lipschitz vs. performance tradeoff ?

Enforcing Lipschitz bounds on a transformer is challenging because transformers include
components that are not globally Lipschitz, such as self-attention [Kim et al., 2021]. We
build on Large et al. [2024] who, similar to LipsFormer, enable Lipschitz continuity by
reparameterizing residual connections and modifying self-attention; however, the full story
is elusive. LipsFormer goes further than Large et al. [2024] to eliminate layer norm [Ba et al.,
2016], but the official implementation may make Lipschitz bounds impossible by setting e = 0
in QK norm [Henry et al., 2020]. In contrast, we remove activation normalization to explore
whether training can proceed with no stability measures.

To develop a toolkit for training transformers with an enforced Lipschitz constant, in
Section 3.2 we compare several methods for constraining weight norm. Surprisingly, we find
that optimizer choice matters: standard methods such as weight decay [Krogh and Hertz,
1991] and spectral normalization [Yoshida and Miyato, 2017| improve a Lipschitz vs. perfor-
mance tradeoff more with Muon [Jordan et al., 2024b| than with AdamW [Loshchilov and
Hutter, 2019]. We see improvement under Muon for MLPs trained on CIFAR-10 [Krizhevsky
et al., 2009] and corroborate it on 2M parameter transformers trained on Shakespeare text
[Karpathy, 2022].

Beyond standard methods, we are inspired by a property of Muon—its weight updates
have small, known spectral norm—+to design a weight constraint method called spectral soft
cap, which enforces a desired maximum spectral norm o,,,, by approximating the map o —
min(omayx, o) on all singular values o in parallel by iterating odd polynomials on the weights.
Section 3.2.1 proves that spectrally capping the singular values bounds weight norm when
training with Muon; we provide no theoretical guarantee for AdamW because the spectral
norm of its update is not controlled. For AdamW, we explore a second technique that may
be better suited to low stable rank updates, although we do not provide provable guarantees.
At every step, this technique finds the largest weight singular value and sets it to o.,. In
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analogy with a hammer that strikes the nail that sticks out the most, we call this technique
spectral hammer. Our experiments suggest that the most effective combination is Muon with
spectral normalization or spectral soft cap, while from Adam the only technique that elicits
a competitive performance vs. Lipschitz tradeoff is spectral hammer.

In Section 3.3, we scale up enforced weight constraint methods to the NanoGPT speedrun
benchmark [Jordan et al., 2024a|, training 145M parameter transformers to competitive per-
formance without layer norm or QK norm. We train a 600-Lipschitz transformer to 21.2%
validation accuracy, compared to the non-Lipschitz baseline of 39.4% validation accuracy.
However, to reach a competitive accuracy of 38.2%, our global Lipschitz upper bound be-
comes astronomical at 10127, While Fazlyab et al. [2019] describe ways to tighten Lipschitz
bounds, inspecting the maximum activation norms reveals that our model operates far from
the worst case. On a particular batch of 393K tokens, the non-Lipschitz baseline has maxi-
mum activation entry 148,480 while the 10'?"-Lipschitz transformer has maximum activation
entry 96.5. Empirically small activations in Lipschitz-constrained transformers may present
an opportunity for low-precision training and inference.

Our contributions are as follows:

e We train transformers with enforced Lipschitz constraints up to 145M parameters,
including a 600-Lipschitz transformer with 21% accuracy on FineWeb10B internet text
and a 4-Lipschitz transformer with 60% accuracy on Shakespeare text.

e We present evidence that weight decay and spectral normalization yield greater benefits
when trained with Muon compared to AdamW, matching accuracy with lower Lipschitz
bound. We verify standard robustness properties hold when training with Muon.

e We introduce two weight norm constraint techniques: spectral soft cap and spectral
hammer. Out of weight regularization methods for AdamW, spectral hammer elicits
the most competitive Lipschitz-constrained performance. For Muon, we prove spectral
soft cap bounds weight norm and find that it performs similarly or slightly better than
spectral normalization.

3.2 Weight norm constraints to enforce a Lipschitz con-
stant

A function f(z) has Lipschitz constant K under a norm |-| if it satisfies ||f(z1) — f(x2)| <
K - |zy — xo| for all inputs z1,z5. For neural networks, the most common operation is
matrix multiplication which has ¢, Lipschitz constant equal to the spectral norm of the
weight matrix. Constraining the spectral norm of weight matrices is not new, with past
work primarily exploring weight decay, spectral normalization, and orthogonal constraints
[Krogh and Hertz, 1991, Yoshida and Miyato, 2017, Miyato et al., 2018, Gouk et al., 2020,
Su, 2024|. These methods have been tested with the AdamW optimizer and have shown
benefits for generalization and adversarial robustness [Bartlett et al., 2017, Tsuzuku et al.,
2018]. The Muon optimizer introduces new possibilites by ensuring small, fixed-norm weight
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updates. Inspired by this property, we revisit existing methods and develop new methods
for constraining weights. We ask the question:

What is the best way to enforce weight norm constraints throughout training?

We compare seven methods based on how well they 1) maintain high performance, 2)
enforce weight norm constraints, and 3) trade off performance with a Lipschitz bound. To
summarize our conclusions, we find that the Muon optimizer achieves lower Lipschitz con-
stants and better performance compared to AdamW. Among the constraint methods, our
experiments suggest that spectral soft cap, spectral hard cap, and spectral normalization
meet these criteria best.

Muon enables hard weight constraints. Unlike in AdamW, the weight update norm
in Muon is bounded by the learning rate—if its orthogonalizing polynomial never exceeds
1. We follow [You, 2025] to ensure this property in our experiments. Pethick et al. [2025]
noted that bounded weight update spectral norm upgrades weight decay with parameter A
to enforce a strict spectral norm constraint of 1/\. The reason is that an equilibrium occurs
between the update step and weight decay when the weight norm w satisfies w = w(1—An)+n
for learning rate n > 0. See Section 3.5.1 for details. We hypothesize that this property
may explain our evidence that Muon, compared to AdamW, improves the Lipschitz vs.
performance tradeoff for standard methods such as weight decay.

A spectral generalization of weight decay. Weight decay can be viewed as a special
case of an odd polynomial iteration applied to the weights. Odd polynomials are special
because they act directly on the singular values: p(UXVT) = Up(Z)V'T, where UXVT is a
singular value decomposition. The odd polynomial for weight decay is p(x) = (1—n\)z, where
7 is the learning rate and X is the weight decay. Cisse et al. [2017] explored an orthogonalizing
polynomial p(z) = (1 + )z — Bz*, but Miyato et al. [2018] note that pressuring all singular
values toward one limits information in the spectrum. Their method, spectral normalization,
enforces norm constraints while allowing singular values less than 1 [Gouk et al., 2020], but
normalization accomplishes the constraint by scaling down the entire spectrum. This global
effect motivates a more targeted approach : penalizing only the singular values that are too
large, leaving smaller ones untouched. For a desired maximum norm o,,,, = 0, an idealized
penalty would apply min(opmax, o) to the singular values, but exactly computing the SVD is
slow. Odd polynomial iterations serve as a fast and effective approximation. We contribute a
family of such approximations called spectral soft cap that contains weight decay as a special
case. The derivation and discussion is in Section 3.5.1.

3.2.1 Methods for controlling weight norm

We are interested in controlling the RMS — RMS operator norm—a rescaled spectral norm—
which has emerged as natural for deep learning [Yang et al., 2023, Bernstein and Newhouse,
2024b]. Unit RMS — RMS norm is equivalent to a spectral norm of 4/doy/din for a weight
matrix W e Ré%«*dn In what follows, we denote the principal singular vector subspace with
singular value o1 > 0 by ojuiv], computed via power iteration. We briefly review some
known methods to constrain weight norm, then introduce two new methods called spectral
capping and spectral hammer.

40



Weight decay, or Frobenius norm regularization, maps W +— (1 — An)W where A > 0
is the decay parameter and n > 0 is the learning rate, guaranteeing a norm bound in
conjunction with Muon.

Spectral weight decay, or spectral norm regularization, targets only the top singular
value, mapping W +— W —Aojuv] where A > 0 is the decay parameter [Yoshida and Miyato,
2017, Su, 2024].

Spectral normalization, originally introduced in GAN training [Miyato et al., 2018],
guarantees a spectral norm bound by mapping W — %

Stiefel manifold projection pressures all singular values toward 1 using an odd poly-
nomial iteration W +— p(1V), leaving open the choice of polynomial p. We follow You [2025]
whose polynomial converges very rapidly rather than the polynomial from |Cisse et al., 2017|.
Although Stiefel manifold projections usually refers to projections for rectangular matrices,
with a slight abuse of notation we use it to describe this operation on both square and

rectangular matrices.
We extend these ideas with two new methods:

Spectral hammer is similar to spectral weight decay, but sets the top singular value to
Omax by mapping W i W + (0max — 01)uiv{ —s0 to speak, a hammer that strikes the nail
that sticks out the most [Hess and Hutchison, 2023]. Spectral hammer does not guarantee
the spectral norm stays below o, > 0 because multiple singular vectors may increase per
update. Spectral hammer is better suited to low stable rank weight updates as are common
in Adam [Zhao et al., 2024|. Muon’s update is always high stable rank.

Spectral capping is co-designed for Muon’s high stable rank update, smoothly approx-
imating the map ¢ — min(oyay, o) for all singular values in parallel. Rather than rely on
costly SVDs, it uses an odd polynomial approximation. The primary variant we experiment
with is called spectral soft cap because it applies a loose approximation ps(p;(z)), where
p1(z) = z — az® and py(r) = = + az® with strength parameter o > 0, as depicted in Fig-
ure 1.3 in Section 1.3. To incorporate weight decay as a special case, we may first apply
po(z) = (1 — An)z. This composition is designed to decay a singular value very little when
0 & Omax, but when o = o, to decay it as strongly as necessary to counteract Muon’s
known update norm, strictly enforcing a weight norm bound. When the learning rate is
scheduled, finding the minimal o > 0 that bounds the weight norm avoids accumulating
error.

Theorem 3.2.1. Spectral soft cap bounds spectral norm.

Given a desired maximum spectral norm o, = 0, learning rate n > 0, weight decay

A = 0, and weight matrix with bounded norm |W |, < 0pax, there is a minimal o = 0
such that Muon’s update step followed by spectral soft cap preserves ||[W |, < omax-
Calculating « involves solving the roots of a quartic polynomial.

Section 3.5.1 gives the proof. A second variant of spectral capping is spectral hard cap,
which uses four quintic polynomials that closely approximate min(oyay, o), as depicted in
Figure 3.4 in Section 3.5.1. Because this approximation is fixed, errors can compound later
in training when the learning rate is scheduled to 0.
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Figure 3.1: Using Muon instead of AdamW improves the Lipschitz vs. perfor-
mance tradeoff for standard weight regularization techniques. We train 1600 MLPs
on CIFAR-10 (left) and 800 transformers on Shakespeare text (right), varying the optimizer
and weight constraint method. Weight decay and spectral normalization reach better loss
with lower Lipschitz constant when using Muon. Two weight constraint methods that we
design—spectral soft cap and spectral hammer—are also promising. See Section 3.5.4 for
experimental details.

Together, these methods cover a range of tradeoffs between strict norm enforcement, pre-
serving the spectrum, and computational efficiency. There may be other, better approaches,
and we think exploring alternatives is an exciting direction. Note that spectral soft cap and
spectral hard cap are designed to be compatible with Muon and therefore were not applied
to tests with AdamW.

3.2.2 AdamW and Muon: comparing weight constraint methods

In Figure 3.1, we run a sweep to map the tradeoff frontier between validation loss and
Lipschitz constant across our methods. The Lipschitz constants are calculated with respect
to the RMS — RMS operator norm (Section 3.2.1). For a ReLU MLP, the Lipschitz constant
is the product of the RMS — RMS norms of its weights. For a transformer, the Lipschitz
constant is calculated as described in Section 3.3.2. Muon consistently achieves both lower
validation loss and lower Lipschitz constants than AdamW, a trend that holds for MLPs on
CIFAR-10 and transformers on Shakespeare text. This result motivates our choice to adopt
Muon for larger-scale experiments. Spectral normalization and spectral soft cap appear
to make the most efficient use of a Lipschitz budget. Spectral hammer-which is designed
for AdamW'’s low stable rank weight updates—shows competitive performance but does not
enforce a Lipschitz constant, limiting its reliability for settings where constraint enforcement
is critical. The sweep includes 2400 training runs, where for each method we display only
the best validation loss per bin of Lipschitz constant.

3.2.3 Adversarial robustness of Lipschitz networks

Prior work [Cisse et al., 2017, Huang et al., 2021| suggests that a neural network’s adversarial
robustness is related to its Lipschitz constant, making Lipschitz control a potential path for
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Figure 3.2: Networks trained with Muon and spectral soft cap have lower Lipschitz
bounds and are more adversarially robust. Lower Lipschitz constants have been linked
to greater adversarial robustness |Cisse et al., 2017, Huang et al., 2021]. To assess this effect in
our models, we train a CIFAR-10 MLP with a Lipschitz constant of 15.2 (Muon + spectral
soft cap), which matches the 45% clean accuracy of a baseline model (AdamW + weight
decay) that has a a higher Lipschitz constant of 7618.8. Left: Example adversarial attacks
with different ¢ budget ¢ > 0 for the perturbation. Top right: We quantify adversarial
robustness across 2000 test images by the top-1 accuracy as a function of €. The Lipschitz-
constrained network trained with Muon and spectral soft cap maintains a higher accuracy for
larger values of €. Bottom right: the mean probability of the correct class in the Lipschitz-
constrained network starts lower than that of the baseline model, but degrades slowly under
increasing e. By contrast, the baseline model peaks higher for ¢ = 0, but drops off sharply.
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developing models with high certified accuracy. We confirm this relationship holds for MLPs
trained with Muon and spectral soft cap. Figure 3.2 compares the accuracy of two trained
MLPs under various budgets of adversarial perturbation €. The pair depicted has matching
accuracy ~ 45% but different Lipschitz constants: 15.2 (Muon + spectral soft cap) vs. 7618.8
(AdamW + weight decay).

While both models achieve similar accuracy without perturbation, the Lipschitz-constrained
MLP (quantified in the RMS — RMS operator norm, Section 3.2.1) trained with Muon ex-
hibits a smoother dropoff in accuracy and confidence across the 2000 CIFAR-10 test set
images as the adversarial attack increases its [, perturbation. Larger values of € are required
to fool the Lipschitz-constrained network (Figure 3.2, left).

3.2.4 Comparing weight constraint methods within Muon

In Figure 3.3, we use Muon alongside all seven weight constraint methods to identify which
approaches best meet three goals: 1) enabling us to define a Lipschitz constant before train-
ing, 2) enforcing that constant throughout training, and 3) matching or exceeding the per-
formance of standard weight decay. We tested each weight constraint method on a 3-layer
MLP with hidden dimension 256, trained with Muon on CIFAR-10 classification. Full ex-

43



o > )
2.2 % 2 0.60 N S 2204
af: - 5 H| Constraint method: < <
") - —
4 2.0 * § oo m  Weight decay % € 1.5
% 1.7 e . € 0.58- *  Spectral weight decay 5 &~
= = A + Spectral normalize 83 10
g 1.4 S A Stiefel manifold 2 ST
] ® D E 0.56 Spectral hammer o g 0.5
%o + 2 e Spectral soft cap Tew
1.2 “Sonr i 2 s
: by o * & Spectral hard cap E 7 0.0
T T T T T U T T
10! 103 100 200 300 0 2000 4000

Lipschitz constant

Lipschitz constant

Training steps

Figure 3.3: Left: Weight constraint methods designed for Muon lie on the frontier
of the Lipschitz vs. loss tradeoff. Each point shows the lowest validation loss achieved
at a given Lipschitz constant across all MLP runs on CIFAR-10. In the low loss regime,
staying on the tradeoff frontier requires either spectral normalization or spectrally capping
the singular values. Middle: Spectral normalization and spectral capping match
baseline with lower Lipschitz constant on CIFAR-10. Each method comes within 1%
accuracy (shaded green region) and has lower Lipschitz constant. Right: RMS — RMS
operator norm of hidden layers over training for the best networks. The norm is
standardized so that the weight constraints all target 1. Spectral normalization and Stiefel
manifold projection strictly meet this target. Weight decay, spectral soft cap, and spectral
hard cap stay below the target, while spectral hammer fails to remain constrained.

perimental details are in Section 3.5.4.

In Figure 3.3 (left panel), we see that spectral normalization, spectral soft cap, and
spectral hard cap define the frontier of the Lipschitz vs. validation loss tradeoff. In Figure 3.3
(middle), we select the parameter settings with the highest validation accuracy for further
analysis. Spectral normalization, spectral soft cap, and spectral hard cap are the only
methods to reach within 1% validation accuracy of the baseline (Muon with weight decay).
Other methods reached within 4% accuracy.

Figure 3.3 (right panel) visualizes how the norm of the hidden weight matrix evolves
during training. All methods but spectral hammer retain the weight norm at or under its
target. In contrast, spectral hammer exceeds its target but begins to converge near the
end, indicating that it could be a promising technique under Muon, too, on longer training
runs that also schedule learning rate to 0. However, within our 50-epoch window, it fails to
reliably control the Lipschitz constant. Spectral weight decay does not enforce predefined
Lipschitz constants, so it is not plotted.

We select spectral soft cap, spectral hard cap, and spectral normalization for our trans-
former training experiments. While all weight constraint methods could potentially benefit
from combining with standard weight decay, we want to isolate the effect of each one.

3.3 'Transformers with enforced weight constraints

To develop a toolkit for training Lipschitz-constrained transformers, we begin in Section 3.3.1
with a discussion of how to handle residual connections and self-attention. In Section 3.3.2,
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we explain how to calculate a Lipschitz bound for a transformer. In Section 3.3.3, we find
that spectral normalization and spectral soft cap perform well on 2M parameter transformers
trained on Shakespeare text. In Section 3.3.4, we scale up to a transformer with 145M param-
eters trained on FineWeb10B internet text [Penedo et al., 2024]|. To combat the undertuned
baseline problem, we begin from the competitive benchmark of NanoGPT speedrunning
[Jordan et al., 2024a].

3.3.1 Breaking the multiplication barrier?

A major triumph of Large et al. [2024] is to create transformers with a depth-independent
Lipschitz constant. However, their approach relies on activations having unit RMS norm.
Because we will later relax this constraint, our transformers will typically not have a depth-
independent Lipschitz bound. Nonetheless, we use their two architectural suggestions.

Reparameterizing residual connections. The classic residual connection from He
et al. [2015] defines the update x + block(z), but even a 1-Lipschitz block can exponentially
increase the Lipschitz constant: z + identity(x) doubles at every layer. Large et al. [2024]
use a convex combination

NN ! T+ % - block(z)
to break this multiplication barrier, where N is the number of layers. The residual connection
will be 1-Lipschitz if the block is 1-Lipschitz. See Proposition 4 of Large et al. [2024]. Our
experiments use this convex parameterization. However, the bound breaks down if activation
norms exceed 1. We are unable to attain high performance without relaxing the 1-Lipschitz
constraint. Therefore we do not fully break the multiplication barrier: deeper networks can
accrue astronomical Lipschitz bounds.

Attention with 1/d scaling. The original multihead attention of Vaswani et al. [2017]
has no global Lipschitz bound |[Kim et al., 2021|. In a footnote, Vaswani et al. [2017] indicate
that they chose 1/4/d scaling because two random vectors u,v with mean 0 and variance 1
will have a dot product u - v with mean 0 and variance the dimension d. But key and
query vectors may align more than at random. Perfect alignment would suggest 1/d scaling.
Large et al. [2024] prove that 1/d scaling in the softmax, together with a factor of §, makes
functional attention,

(3.1)

.
% x softmax <Q—;{ > Vv, (3.2)

1-Lipschitz if the input norms are 1. The Lipschitz constant is with respect to the |-|rmsso
norm, the max RMS norm of any token. See Proposition 7 of Large et al. [2024]. Finally,
while Large et al. [2024] retains layer normalization, we remove it so that every operation is
Lipschitz continuous.

3.3.2 Calculating the Lipschitz constant of a transformer

To test whether transformers with small Lipschitz constant can perform well, we would
like to know what weight norm to enforce to end up with a desired Lipschitz bound. This
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section sketches an algorithm for bounding the Lipschitz constant of a transformer given its
weight norms; the full algorithm is in Section 3.5.2. Our bound tightens Theorem 2 from
LipsFormer [Qi et al., 2023] by accounting for each weight norm individually, rather than
working with the max weight norm across residual blocks. Fazlyab et al. [2019] suggest ways
to tighten a global bound like ours, which we leave to future work. To bound self-attention,
we extend Proposition 7 from the modular norm paper |Large et al., 2024] to when the input
is no longer unit norm, an essential concession to reach different regions of the Lipschitz vs.
performance tradeoff.

Our Lipschitz bounds are with respect to the max RMS norm over token positions,
denoted ”'HOORMS-

Step 1: Bound activation norms. Our Lipschitz bound for rescaled dot-product
attention relies on the activation norms remaining bounded. Therefore, the algorithm begins
by computing a per-layer bound for the maximum |-|,grys norm of activations. This bound
comes from combining residual connections with per-block maximum activation increases,
found for an MLP by multiplying its two weight norms and for attention by multiplying its
Wy and Wy weight norms. Our MLPs can slightly decay activation norm because we scale
GeLU down by its maximum derivative, GeLU/1.1289.

Step 2: Bound the Lipschitz constant. Suppose the Lipschitz constant prior to
reaching a particular layer is L. The Lipschitz constant after a residual connection is at
most (1 —a)L + a- L+ Ly To compute a block’s Lipschitz constant Lpjock, for MLPs we
calculate ||[Wi,|rms—rus © |Wout [rms—rums/1.1289 due our rescaled GeLU, and for attention
we use the formula from Section 3.5.2.

3.3.3 Shakespeare Transformer

Before scaling to NanoGPT, we explore the Lipschitz vs. performance tradeoff for transform-
ers at a smaller scale. To narrow our aim, we want a transformer that has small Lipschitz
constant at every layer. Béthune et al. [2022| comments that any L-Lipschitz classifier can
be made 1-Lipschitz by dividing the logits by L, but we do not downscale our final logits,
although scaling temperature during training could have beneficial effects [Agarwala et al.,
2023]. All experimental details are available in Section 3.5.4.

We can train a competitive 4-Lipschitz Shakespeare transformer. Our 4-
Lipschitz transformer reaches validation loss 1.29 < 1.47 from the baseline in Karpathy
[2022], although the baseline may not be tuned carefully. Our model has dimension 256,
depth 3, and was trained for 2000 steps with Muon; the baseline has dimension 384, depth 6,
and was trained for 5000 steps with AdamW. Ours uses no layer normalization. To achieve
this performance requires relaxing the maximum weight norm o, to around 2. The best
validation loss from our sweep was 1.20 with a 131-Lipschitz transformer. While gains may
be attributed to hyperparameters or optimizer choice, we nonetheless end up with one con-
struction of our aim: a performant transformer with a small, enforced Lipschitz bound.

3.3.4 Scaling to NanoGPT

We validate our method by training a transformer with 145M parameters on the NanoGPT
speedrun benchmark [Jordan et al., 2024a|, which is built on top of [Karpathy, 2022]’s re-
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Transformer Lipschitz Number Weight Validation Validation Activation

Architecture Bound  of Steps Constraint Accuracy (1) Loss (|) Max Entry
Baseline (speedrun) o0 1,770 none 0.394 3.280 148,480
Baseline (Karpathy) 0 17,000 none - 3.280 -
LipsFormer 10130 1,770 none 0.301 4.130 61.1
Ours (opax = 1) 600 1,770 spectral normalize 0.212 5.047 14
Ours (Omax = 8) 10118 1,770  spectral soft cap 0.365 3.569 54.25
Ours (Opax = 8) 10°6 1,770  spectral hard cap 0.354 3.670 107
Ours (omax = 8) 10130 1,770 spectral normalize 0.360 3.607 100
Ours (Omax = 16) 10%™ 7,080 spectral normalize 0.395 3.280 160

Table 3.1: Transformers with enforced Lipschitz constraints can match perfor-
mance on NanoGPT. The NanoGPT speedrun is a competitively tuned benchmark build-
ing on Karpathy’s original replication of GPT-2 [Karpathy, 2022, Jordan et al., 2024a]. With
the speedrun baseline as a starting point, we substitute Lipschitz transformer components
and constrain weight norms to not exceed a given oy, = 0. Unlike LipsFormer [Qi et al.,
2023], our weight constraint methods enforce a Lipschitz constant chosen prior to training.
To demonstrate, we train a 600-Lipschitz transformer to 21.2% accuracy. However, reaching
accuracy on par with the baseline increases the Lipschitz bound to 10?™, computed as in
Section 3.3.2. Our Lipschitz bounds may be loose, as suggested by the small maximum
activation that we observe across a batch of 393K tokens. Per-run loss variance is 0.0008.

production of GPT-2. The baseline is competitively optimized to reach validation loss 3.28
in the shortest wallclock time. The latest record as of February 1, 2025 requires only 1770
training steps, or 3 minutes of training on an 8xH100, and achieves a validation accuracy
of 39.4%. We implement our methods on top of this baseline while keeping all other train-
ing methods fixed. We report the validation loss and the validation accuracy as primary
comparison metrics.

To implement our method, we first remove speedrun-specific optimizations such as skip
connections and learnable scale parameters. Next we remove the layer norms used for pre-
normalization, the logit tanh softcap, and the QK norms in the attention layers. We also
replace the ReLU? activations with GelLU/1.1289—making the activation function Lipschitz
continuous. We reparametrize the residual connections and attention layer as in Equa-
tions (3.1) and (3.2). At initialization, we project the linear weights to be semi-orthogonal
and normalize the embeddings to have RMS norm 1. Finally, we explicitly extend beyond
the closest related work, LipsFormer [Qi et al., 2023|, by enforcing weight norm constraints
throughout training: we cap the RMS norm of embeddings to 1 and apply one of the weight
constraint methods from Section 3.2.1 to all other weights after every training step.

Table 3.1 summarizes our 145M parameter scale transformer results. In contrast to
LipsFormer, our method guarantees a Lipschitz upper bound specified prior to training. An
important lever is the maximum RMS — RMS norm o, = 0 we allow for the linear layers.
Smaller oy, correspond to smaller Lipschitz bounds but may lower performance, and vice
versa. Two other variables that affect the Lipschitz constant are the attention logit scale and
final logit scale. Using spectral normalization with o, = 1 and a final logit scale of 8 results

47



in a 600-Lipschitz transformer that attains validation loss 5.047 and accuracy 21.2%. No
activation in this model exceeds RMS norm 1, which could enhance stability during training.
Setting o,.x = 16 enables reaching parity with the speedrun performance but increases the
Lipschitz bound to 10276, This setting trains for 4x as many steps as the current speedrun
record (but 2.4x fewer than Karpathy’s baseline).

3.4 Discussion

Despite high Lipschitz upper bounds, our transformers on NanoGPT exhibit low maximum
activation entries (50-110) compared to the baseline (148K). Perhaps as a result, our models
train stably without standard measures including layer norm, QK norm, or tanh logit soft-
capping. In future work, we are interested to test whether these low maximum activations
hold potential for low-precision training and inference. We also wonder whether training
would remain stable at larger scales.

For MLPs and small transformers, we find that using Muon improves the Lipschitz vs.
performance tradeoff. Out of weight constraint methods we test, spectral normalization,
spectral soft cap, and spectral hard cap compare favorably to standard weight decay. Per-
haps surprisingly, on both CIFAR-10 and Shakespeare data, we achieve our best loss with
Lipschitz-enforced models, potentially representing a training speed benefit.

Our work has several limitations. We did not find a principled way to select weight norm,
final logit scale, and attention logit scale hyperparameters, instead relying on sweeps. Our
Lipschitz bound also increases rapidly as depth increases, unless we constrain weights to
unit norm. A different architecture, or insight beyond a global Lipschitz bound, could make
progress on this problem.

In conclusion, this paper develops a method for training transformers with an enforced
Lipschitz constant throughout training, extending earlier efforts focused on different archi-
tectures or only constraints at initialization. Lipschitz-certified transformers may be of inter-
est for domains such as privacy, control, adversarial robustness, and low-precision training.
Although training speed benefits fade in our NanoGPT speedrun experiments, we wonder
whether at this scale Lipschitz-enforced training can be made faster than standard training.

3.5 Proofs and experimental details

3.5.1 Coupling spectral cap to learning rate

This section proves Section 3.2.1: spectral soft cap bounds weight norm. We will derive
a strength parameter that couples to the learning rate, because otherwise using odd poly-
nomial approximation—rather than the ideal map min(o,.x, 0)—accumulates errors when
the learning rate falls below the approximation gap. We will prove the theorem using an
equilbrium analysis: solving for the fixed point of a contractive map.

To warm up, there is a special case in which weight decay provably bounds the weight
norm during training. It happens when the norm of the update is bounded by the learning
rate, |AW| < n. To see why, suppose weight decay is applied at every step of training

48



and is linearly coupled to the learning rate as An for some constant A > 0. Subadditivity
of norms guarantees |W + AW| < |[W| + |[AW| < |W] + n. The weights cannot increase
further when the decay and the learning rate are in equilbrium: |[W| - (1 — An) +n = |W]|.
The equilibrium occurs at |[W|| = 1/A. Therefore 1/ is the maximum weight norm possible
under standard weight decay, if the update norm is bounded above by 7. Pethick et al. [2025]
noted the same phenomenon.

To prove Section 3.2.1, we conduct a general equilibrium analysis to consider three effects:
weight decay, optimizer step, and weight projection. The net effect of the three effects should
decrease every singular value 0 > oy.x. Let the weight decay A be coupled to the learning
rate 1. Suppose the weight update is constrained to have norm ||AW| < 7. Let p(z) be an
odd polynomial. Equilbrium occurs when

plz- (1 =) +n) <z (3.3)

In words, apply weight decay, apply an optimizer step that will not increase singular values
by more than 7, and then apply the odd polynomial. If the singular value does not increase
for all z € [0, Omax], then the weight norm will never exceed oyax.

Recall that pi(z) = 2 — az® and py(z) =  + az®.

When p(z) = pa(p1(x)), the equilibrium condition Equation (3.3) becomes

fla) = (k—ak®) + a (k- ak®)’ — o <0, (3.4)
where k = opax - (1 —An) + 1. (3.5)

We can consider only z = o, because, in this case, larger = will decrease if a smaller x
decreases. Here « is the free variable. Finding the smallest @ > 0 amounts to solving the
quartic polynomial

—k%a* +3k"a® — 3K°a® + k — Opax = 0. (3.6)

Any numerical solver can approximate «. This is the a that makes 0., a fixed point
under the overall training step. Connecting to the earlier equilibrium analysis, the special
case @ = 0 is possible when already k& = opax, Or Omax = 1/A. While the coupling for
spectral soft capping is not linear as in common implementations of AdamW, it succeeds at
making tight weight norm bounds compatible with learning rate schedules that may tend to
0. Initializing the weights near o,,.x, rather than strictly less than it, suffices for the bound
to hold throughout training in practice.

One limitation of automatic coupling is that it may be stronger than necessary, because
it assumes updates align perfectly with the weights in the worst case. If the learning rate
is scheduled to 0, gradients may align less with the existing weights especially at the end,
which can cause the weight norm to contract slightly.

3.5.2 Proving an upper bound on the Lipschitz constant of a trans-
former

We elaborate on the algorithm sketched in Section 3.3.2 and prove a Lipschitz bound on
attention. Our Lipschitz bounds are with respect to the max RMS norm over token positions,
denoted |||corMms-
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Figure 3.4: Spectral hard cap is a weight constraint method that applies the above odd
polynomial to a weight matrix, which applies it to all singular values in parallel. Left: the
four quintic polynomials. Right: the composition of the four quintic polynomials is designed
to approximate min(1, z) on the range x € [0, 3].

Recall the two primary ways Lipschitz constants L; and L, of two functions f and g
interact:

e Adding: f + g has Lipschitz constant at most Ly + L.

e Composing: f og has Lipschitz constant at most Ly - L,.

Step 1: Residual connections. Suppose that, before reaching a certain residual
connection, a transformer maps input data x to f(x) with Lipschitz constant L. Suppose
the transformer has 2N residual connections. Let o = ﬁ The residual connection acts on

f(x) as
[(1 — «) - identity 4+ « - block] (f(z)). (3.7)
After the residual connection, the Lipschitz constant composes and adds to become at most
(I—a) - L+a-L- Lok (3.8)

Applying this formula sequentially upper bounds the Lipschitz constant of a transformer
layer by layer. We now determine Ly for an MLP and attention block in terms of their
weight norms.

Step 2: MLP. Our MLP composes Wy, o (GeLU/1.1289) o W;,. The Lipschitz con-
stants of the two weight matrices are their norms |[Wout|rms—ruvs and |[Win|[rms—rus, while
GelLU/1.1289 has Lipschitz constant 1 because we divide by the maximum derivative of GeLU.
OVGI’&H, the LlpSChltZ bound for an MLP block is LMLP < HWoutHRMSHRMS HVVm HRMSHRMS/11289

Step 3: Attention. Let ¢ denote the token dimension. Let the queries, keys, and values
be denoted by (g, k,v) € R?>*de x R x R*4v_ Our attention block composes

%Wout oF, (3.9)
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where function attention is denoted by F' = softmax(%qkT + M)v for some mask M. As a
consequence of the following theorem, if every attention input is unit norm, then functional

attention is 1-Lipschitz. This property is what motivates scaling attention by % rather

than \/l—d» inside the softmax. It also motivates scaling the attention output by % to make
Q

it unit sensitivity. Functional attention is no longer 1-Lipschitz if its inputs are not unit
norm. Recall that the shorthand notation |z|,rums is the max RMS norm of a d-dimensional
activation over [ tokens, x € R*?.

Theorem 3.5.1. Lipschitz bound on functional attention

Let ¢ denote tensor contraction. Given any perturbations Ag, Ak, Av to the queries,
keys, and values, functional attention satisfies

IVE(q, k,v) o (Ag, Ak, Av)| < [Av] + o] (|Ag] %] + [l AK]), (3.10)

where the norm is ||| orms : R*? — R, the max-over-tokens RMS norm of the embed-

ding vector.
. J

Proof. The argument mirrors the proof of Proposition 7 from the modular norm paper |Large
et al., 2024]. We write the attention matrix as A = Softrnax(iqkT + M). Its derivative is

AA =V softmax(%qk:T + M) o (Ag, Ak). The derivative of F' splits into two terms,

VFE(q,k,v) o (Ag, Ak, Av) = A(Av) + (AA)w. (3.11)

We call the maximum entry of A or AA its L® operator norm, which comes into play by
observing that |Az|wrms < | Allw—opllZ]corms. For the first term, note that |[Afgp_op < 1
because softmax never exceeds 1. For the second term, Large et al. [2024] in Equation E.58
show that

|AAw—op < [ Aqlocrms]kllccrms + [qlocrms | AF|coras- (3.12)
The result follows by applying these bounds to | A/ w_opl|Av|corms + [AA|w—op|V]|corms. O

Step 4. Activation norm bounds. To apply the theorem, we now bound the input
norm to attention. To do so we will track the maximum RMS norm of activations everywhere
in the network. We do not use layer norm and therefore cannot reset activation norms to
1. Let xgp,...,zon denote all the activations, from the initial embedding xy through to
the N alternating attention and MLP blocks acting via residual connections. Suppose the
embedding layer maps tokens to have RMS norm at most 1, or |zo|orms < 1. Attention
and MLP increase the norm as follows:

e Attention computes Wy, o (V, A) for some attention matrix A, where (V, A) is short-
hand for functional attention. By definition V' cannot increase the RMS norm of the
embedding z; at any token by more than its RMS — RMS operator norm, meaning
Vzi|orms < |V |rms—rms | Zi|orms. The same bound applies to (V) A)x; by subaddi-
tivity of norms, since entries of the attention matrix A sum to 1 in the token dimension.
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Therefore attention can increase the activation norm by

|(Wout © (V, A)) ;| sorms < |[Woutllrms—rms |V [ rms—rus | % | orms - (3.13)

In words, multiply the weight norms of W, and V to get the maximum increase.

e The MLP computes Wy, o (GeLU/1.1289) o W;,. Therefore the MLP can increase

activation norm by |‘WoutHRMS—>RMSHWnHRMS—»RMS/1'12891 since |GeLU(x)| < |{L‘| for all
reR.

e The residual connection acts like

|(1 =) - 2z; + - block(z;)|eorms < (1 — )|z corms + o block(x;)|orms.  (3.14)

Algorithm to compute Lipschitz constant. Therefore, given the weight norms of all
matrices in a transformer, we use the preceding results to compute its Lipschitz constant in
two steps. First, we upper bound the activation norm everywhere in the network using Step
4. Second, we upper bound the Lipschitz constant using Steps 1-3. The Lipschitz bound
after the final layer is what we refer to as the transformer’s Lipschitz upper bound.

3.5.3 Implementing LipsFormer and bounding its Lipschitz con-

stant

To turn our enforced norm training into LipsFormer [Qi et al., 2023], we make the following
changes:

1.
2.

Remove spectral soft cap and embed projections.
Use CenterNorm: mean subtraction with learnable entrywise scale and bias.

Use scaled-head cosine attention with ¢ = 107, 7 = 12, v = 1. Notably, the official
implementation of LipsFormer uses € = 0. According to their Theorem 1, this choice
may make a finite Lipschitz bound impossible. We set € > 0 to fix the issue.

Heuristically scale down attention output by 1/npeaqs to match their implementation.

Insert residual connections with learnable strength «, initialized to 1/N esidual connections-

. Xavier normal initialize linear layers, then apply spectral normalization W — W /||[W||..

Include drop path: every residual connection is skipped with p = 0.5 and, if taken, is
scaled up by 1/(1 — p), matching their official implementation which uses nn.Dropout.

Use weight decay 0.1, matching their implementation (not applied to scalar parame-
ters).
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9. Use the Muon optimizer to give LipsFormer the fairest comparison, copying hyperpa-
rameters from our run. We tested training with AdamW for all parameters, an exact
replication, but found performance degraded sigificantly: after 1770 steps, validation
loss was 4.86 (compared to 3.61) and validation accuracy was 0.227 (compared to
0.301).

10. For non-weight-matrix parameters, use Adam hyperparameters n = 0.001, 5; = 0.9,
Bs = 0.999, € = 1078 to match their implementation.

11. Use cosine learning rate schedule with decay to 0 to match their implementation.

Bounding the Lipschitz constant of LipsFormer. In Table 3.1, we report that our
trained implementation of LipsFormer has a Lipschitz upper bound of 10'*°. To calculate
this value, we use the final weight norms of the MLP and attention blocks to bound the
Lipschitz constant of each residual block, relying on LipsFormer’s Theorem 1:

1 1 1
Lip(SCSA)y < 2N (N — Dwre 2|[WE|y + 2(N — )wre 2|[WO|y + 2Nve 2 |[WY 5.

Using N = 128 (head dimension), 7 = 12, v = 1, and empirical weight norms, we calculate
the Lipschitz constant for every layer. We use the maximum entry of the learned residual

strength «, which is an entrywise multiplication, to convert the layerwise bounds into a final
bound

5 S
Lin(F) < [ TT [ (1 + cvsunLip(fom),
s=1m=1
which we take from their Equation 19. Alpha has typical maximum entries around 0.5 for
attention connections and 0.15 for MLP connections. With € = 107%, we compute a final
Lipschitz bound of 1.97 x 10!,

3.5.4 Experimental details

This section gives experimental details for all results in the paper. The three categories
of experiments we run are MLP training, Shakespeare transformer training, and NanoGPT
speedrun training.

Datasets.

e For MLP training we use the CIFAR-10 dataset Krizhevsky et al. [2009] with the
standard train and test splits and no data augmentation. We do not shuffle the order
of batches.

e For Shakespeare transformer training we use Karpathy’s 1M character-level dataset
with standard training and validation splits [Karpathy, 2022]. We shuffle the order of
batches.

e For NanoGPT speedrun transformer training we use the FineWeb10B dataset |[Penedo
et al., 2024] loaded in the standard order. We use the same validation split as the
modded NanoGPT speedrun benchmark [Jordan et al., 2024a).
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Compute requirement. All our experiments can run on a V100, A100, or H100 GPU
in less than 5 minutes, except the NanoGPT speedrun transformer which requires 8xH100
and runs in 5-10 minutes.

Modula library. For MLP and Shakespeare experiments, we use JAX [Bradbury et al.,
2018] on top of the Modula library [Large et al., 2024, Bernstein, 2025]. We implement
our own model components. Our AdamW implementation does not include bias correction,
although the discrepancy decays rapidly after aronud 20 steps because we use 5, = 0.9, 5y =
0.95 in all experiments except one, not reported, in which we determine that this is a good
setting for the momentum EMAs.

MLP experiments. All MLPs we train are width 256 and depth 3 (i.e., one hidden
layer) with ReLU activations and no bias on data from CIFAR-10. We use batch size 512 and
a linear learning rate schedule that decays to 0 in all experiments. Modula’s mass calculation
causes the effective learning rate to be scaled by 1/3. We train for 50 epochs except in one
case, when we train for 20 epochs for the models in Figure 3.2. We zero-initialize the final
layer. We train all models in float32 precision and run the weight constrain methods in float32
precision. We experimented with lower precision and found comparable metrics across the
board for bfloat16 training. We set seed 0 and store all hyperparameters and log information
to enhance reproducibility.

Shakespeare experiments. All transformers we train for Shakespeare are width 256
with 3 blocks (attention + MLP), no bias, and four attention heads. The out projection
in each attention and MLP block is initialized to zero. We use sequence length 256 and
batch size 64 to match the baseline from [Karpathy, 2022|, except we train for 2000 steps
while Karpathy trains for 5000 steps. We set Modula’s blocks mass parameter to 32 to
cause 95% of the feature learning to occur in the transformer blocks. We determined this
ratio by sweeping the blocks mass, which controls the ratio of learning rate between the two
embedding layers and the transformer blocks. Training with Muon means applying Muon to
all linear layer weight matrices (including the final logit head) but normalizing the columns of
embedding gradient, as suggested by the ¢; — RMS duality map [Bernstein and Newhouse,
2024b|. We were concerned that rare tokens may cause the momentum buffer to dualize
columns to full strength updates for hundreds of steps until the column decays to exactly
zero, so we tested whether capping the maximum inflation factor for the embedding column
normalization could help. We tested maximum factors in the set {1,4,16,...,65536} across
8 seeds and found no significant difference. We choose to maximally multiply each column
by 16 during the dualization step. Finally, we found that to train to the validation losses
reported we had to use a trick: we decayed the learning rate by a factor of 1/2 per residual
layer, causing later layers to train more than earlier layers. This change is implemented by
setting the sensitivity of the Mul module in Modula to 1. We do not know why this trick is
necessary.

Figure 3.1 sweeps over the following hyperparameters:

e MLPs on CIFAR-10: we test the following combinations of optimzer and weight con-
straint method: weight decay, spectral weight decay, spectral hammer, spectral nor-
malization, and Stiefel manifold projection for both AdamW and Muon; and spec-
tral soft cap and spectral hard cap only for Muon. For AdamW, we vary the weight
decay and spectral weight decay parameters with 10 points in log-space from 1072
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to 10°. For Muon we vary the weight decay parameter with 10 points in log-space
from 1073 to 10° and the spectral weight decay parameter with 10 points in log-
space from 1072 to 10°. For AdamW with spectral normalization, Stiefel manifold
projection, and spectral hammer, we vary the maximum weight norm in the set
Omax € {2,3,4,5,6,7,8}. For Muon with spectral normalization, Stiefel manifold pro-
jection, spectral soft cap, and spectral hard cap, we vary the maximum weight norm
in the set opmax € {4,5,6,7,8,9,10}. For Muon with spectral hammer we vary the max-
imum weight norm in the set o, € {1,2,3,...,10}. For AdamW with all methods we
sweep 16 learning rates in log-space between 107° and 107%%. For Muon we sweep 16
learning rates in log-space between 1072 and 10' for all methods except for spectral
hammer, where we use these learning rates for oy, € {4,5,6,7,8,9,10}, and use 16
learning rates in log-space between 1072 and 10° for o, € {1,2,3}. Overall, this
sweep results in 1,610 total combinations, 682 with AdamW and 928 with Muon.

Transformers on Shakespeare: we test the following combinations of optimizer and
weight constraint method: (AdamW, weight decay), (AdamW, spectral normalize),
(AdamW, spectral hammer), (Muon, weight decay), (Muon, spectral normalize), (Muon,
spectral soft cap). For spectral normalize, spectral hammer, and spectral soft cap, we
vary the maximum weight norm in the set o, € {1.0,1.2,...,2.8,3.0}. For the base-
line, we vary weight decay in the set A € {2/3,0.5,0.4,0.3,0.2,0.1,0.05,0.03,0.01, 0}.
For AdamW we sweep 16 learning rates between 10~%® and 107'®. For Muon, we
sweep 12 learning rates between 1071% and 10'°. We ran tests before to find ranges
that cover the optimal learning rate.

Figure 3.2 reports adversarial examples and dataset-wide statistics from two models
trained for 20 epochs. The AdamW model is trained with learning rate 8.1 x 1073 and
weight decay A = 0.1. The Muon model is trained with learning rate 2.3 x 10~! and weight
decay A = 0, using the spectral soft cap method with a weight constraint of o, = 3.

The left panel of Figure 3.3 visualizes the same data from the experiment for Figure 3.1,
but focuses only on MLPs trained with Muon on CIFAR-10. The middle and right panels
use the Muon optimizer, with the following tuples of weight constraint method, maximum
singular value, weight decay, spectral weight decay, and learning rate:

Weight decay, N/A, 0.1, 0, 1.585

Spectral weight decay, N/A, 0, 0.05, 0.157
Spectral normalization, 6, 0, 0, 1.0

Stiefel manifold projection, 5, 0, 0, 1.0
Spectral soft cap, 6, 0, 0, 0.398

Spectral hard cap, 5, 0, 0, 0.631

NanoGPT experiments. Following the Modded-NanoGPT speedrun standard [Jordan

et al.

, 2024a|, our training runs print log files with the full source code required to reproduce

the results. We briefly summarize the changes we made to convert the NanoGPT speedrun
record (as of May 2025) into our method:
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Every step, RMS normalize the embedding columns.

Initialize all linear layer weight matrices to be orthogonal.

Reparameterize residual connections according to Equation (3.1): £-a + Tblock(z)

residual connections, where L = 24 is the number of residual connections.

Reparameterize attention according to Equation (3.2): % overall scale on the attention
output and 1/djeaq scale inside the softmax.

Every step, apply spectral soft cap (or spectral normalize) to every linear layer weight
matrix based on a prespecified maximum desired weight norm o,,,y.

Use different orthogonalization coefficients that at most inflate a singular value to
1.14502. Therefore, the maximum update norm we pass to the strength parameter
solver for learning rate coupling in spectral soft cap is n-1.14502 - 1.05 with an extra
factor of 1.05 to be safe around numerical precision errors. The iteration is derived by
modifying the method in [Cesista et al., 2025].

Remove U-net structure.

Use GelLU/1.1289 instead of ReLU?.

Switch dimensional scaling to be 4/fan_out/fan_in instead of max(1, y/fan_out/fan_in).
Remove RMS normalization: the model is now Lipschitz continuous.
Add back the 7th attention layer (which was removed in the speedrun).

Run weight projections in bfloat16 (which we found to slightly improve performance).
Spectral normalization uses 2 iterations, meaning that weight norms can exceed the
specified maximum o,,,, due to approximation error; in practice weights with norms
enforced by spectral normalization exceed the specified maximum by around 10%.

o6



Chapter 4

Conclusion

Metrized deep learning suggests assigning a norm to every part of a neural network. We
hope this thesis serves as a useful guide to the method. While we present early applications,
such as deriving Muon, there remain many paths to explore. In summary:

Enforcing norms on the gradients, duality maps arise as a balance between decreasing loss
the most and disturbing the model the least. Popular optimizers such as SGD, Adam, and
Shampoo can be viewed as resolving this balance under different choices of norm. Duality-
based optimizers like Muon have shown convincing evidence of speeding up training at scale.

Enforcing norms on the weights, a Lipschitz bound can be maintained throughout train-
ing. Standard methods—weight decay and spectral normalization—appear to improve the
Lipschitz vs. performance tradeoff when trained with Muon. A constraint method co-
designed for Muon, called spectral cap, performs as well or slightly better than spectral
normalization. A 4-Lipschitz, 2M-parameter transformer on Shakespeare text reaches vali-
dation accuracy 60%. Scaling to 145M parameters on NanoGPT, a 600-Lipschitz transformer
reaches 21% accuracy on internet text. However, attaining baseline accuracy resorts to an
astronomical global Lipschitz bound of 102", Maximum activation entries remain small in
practice, with potential benefits for low precision training and inference.
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