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Abstract
The best result in the literature for the ℓ2 Lipschitz constant of softmax(γx) for γ > 0 is γ [Gao and

Pavel, 2018]. We improve this bound to γ/2 and prove that the new bound is tight. The sensitivity of
softmax has implications for deep learning, particularly for attention in Transformers.

1 Introduction
The softmax function for x ∈ Rn is defined in each component as

softmax(x)i = exp(xi)∑
j exp(xj) . (1)

We are interested in the maximum sensitivity of softmax(γx), where γ > 0 is the inverse temperature. The
sensitivity is bounded by the spectral radius of the Jacobian. We calculate the Jacobian and show that its
maximum singular value is bounded from above at γ/2. We construct an example to show the bound is tight.

2 Softmax Jacobian
Let p = softmax(γx). Let P = diag(p1, . . . , pn). The Jacobian of softmax(γx) is well known to be

J = γ(P − pp⊤), (2)

or in component form Jij = ∂pi

∂xj
= γpi(δij − pj), where δij is the Kronecker delta.

This Jacobian matrix is symmetric and has real number entries. Therefore its eigenvalues are real. We
seek its maximum eigenvalue λ, which is its spectral radius and thus the Lipschitz constant of softmax(γx).

The bound cited often in the literature is λ ≤ γ. This loose bound follows from noting that J is positive
semidefinite; thus its eigenvalues are nonnegative, and all of them together sum up to Tr(J) = γ(1 − pT p) ≤ γ.

3 The Gershgorin circle theorem
In 1931, Gershgorin proved that the eigenvalues of a matrix J lie within at least one of the disks

D(Jii, Ri) ⊆ C, (3)

where Jii is the center of the disk and Ri =
∑

j ̸=i |Jij | is its radius [Gershgorin, 1931]. In our case, the
eigenvalues of J are all real numbers. Thus all the eigenvalues of J lie within at least one interval

[Jii − Ri, Jii + Ri] . (4)
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Recall that Jii = γpi(1 − pi). Miraculously, the radius reduces to the same value:

Ri =
∑
j ̸=i

|Jij | = γ
∑
j ̸=i

| − pipj | = γpi

∑
j ̸=i

|pj | = γpi(1 − pi). (5)

The maximum of the function f(pi) = pi(1−pi) for pi ∈ [0, 1] is 1
4 . Thus the maximum value that the center Jii

and the radius Ri can attain is 1
4 γ. The farthest any disk can reach is then the interval

[
0, 1

4 γ + 1
4 γ

]
=

[
0, 1

2 γ
]
.

Even the maximum eigenvalue of the softmax Jacobian cannot exceed 1
2 γ.

4 The bound is tight
Consider x = (0, 0, −α, . . . , −α) as α → ∞. Then softmax(γx) approaches p = ( 1

2 , 1
2 , 0, . . . , 0) with Jacobian

J = γ


1
4 − 1

4 0 · · · 0
− 1

4
1
4 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 . (6)

For v = 1√
2

[
−1 1 0 · · · 0

]⊤ we can compute

v⊤Jv = γ

2
[
−1 1

] [
− 1

21
2

]
= γ

2 , (7)

which attains the Lipschitz bound ∥Jv∥2 ≤ γ
2 ∥v∥2. We conclude the bound is tight. The example also shows

that the highest sensitivity regime for softmax is when the softmax reduces to a choice between two indices.

5 Discussion
Several works aim to put Lipschitz bounds on neural networks, including using orthogonal weight constraints
to improve gradient flow [Qi et al., 2023; Béthune, 2024]. Softmax is important for this program because it
appears in almost every modern architecture, including Transformers [Vaswani et al., 2017].

While the original 1/
√

d scaling in dot product attention is not Lipschitz, subsequent work has proposed
ways to modify attention to be Lipschitz [Kim et al., 2021]. In particular, Large et al. [2024] use the
max-over-tokens RMS norm. Another possibility is the (computationally intractable) L∞→1 induced operator
norm: given all modules are well-normed in the sense of Large et al., the input is unit L∞ norm after scaling
by 1/d, meaning it is entrywise at most 1, and the output is a probability vector equipped with the L1 norm.

If the useful input-output norms for softmax are not Euclidean, then the bound in this paper is moot.

6 Conclusion
We have proved that γ

2 is a tight bound on the ℓ2 Lipschitz constant of softmax(γx). We hope this simple
result might be useful in its own right and for attempts to control the dynamics of attention in Transformers.
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